
FaaSCell: A Case for Intra-node Resource Management
Work-In-Progress

Christos Katsakioris
National Technical University of Athens

ckatsak@cslab.ece.ntua.gr

Chloe Alverti
National Technical University of Athens

xalverti@cslab.ece.ntua.gr

Konstantinos Nikas
National Technical University of Athens

knikas@cslab.ece.ntua.gr

Stratos Psomadakis
National Technical University of Athens

psomas@cslab.ece.ntua.gr

Vasileios Karakostas
University of Athens
vkarakos@di.uoa.gr

Nectarios Koziris
National Technical University of Athens

nkoziris@cslab.ece.ntua.gr

ACM Reference Format:
Christos Katsakioris, Chloe Alverti, Konstantinos Nikas, Stratos Psomadakis,
Vasileios Karakostas, and Nectarios Koziris. 2023. FaaSCell: A Case for Intra-
node Resource Management: Work-In-Progress. In The 1st Workshop on
SErverless Systems, Applications and MEthodologies (SESAME ’23), May 8,
2023, Rome, Italy. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3592533.3592812

1 MOTIVATION
Open-source FaaS platforms have recently shown rapid growth,
which is usually manifested as extension or specialization of exist-
ing cloud-native components and systems –mainly over Kubernetes–
since they are provably capable of standing their ground against
production-level needs. Despite its advances, the cloud-native ecosys-
tem has focused mostly on container-based deployments so far.
FaaS workloads’ need for massive colocation [1] without sacrificing
security guarantees, pushes multi-tenancy to its limits.

First, this calls for highly isolated environments, which are tra-
ditionally associated with hardware-accelerated virtualization [1,
4, 21, 24, 25, 41]. Second, the fine-grained management of a node’s
available resources becomes essential, but also challenging because
of FaaS workloads’ characteristics [35]. Invocations tend to be short-
lived, with irregular inter-arrival patterns. Keeping function in-
stanceswarm becomes too expensive in terms of allocated resources,
whereas booting them anew on each invocation imposes prohibi-
tive slowdowns (i.e., cold starts). Lately, both Cloud providers and
researchers consider VM snapshots as a viable mitigation [9, 16, 40].
After booting the function sandbox, its whole state –including its
memory– is captured and persisted on storage. On subsequent in-
vocations, the sandbox can be restored from the snapshot rather
than booted anew, thus drastically improving startup time. Such
mechanisms are being adopted by open-source systems [8, 9] and
Cloud providers [27].

FaaS platforms are by nature distributed. Nevertheless, research
on resource management also entails work on intra-node resource
allocation. This is attested by several serverless studies focusing on
single-node experiments to either investigate problems or evaluate
proposed solutions. Past work generally examines node-local re-
source management, involving CPU, networking or I/O, often in

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 Inter-
national License.
SESAME ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0185-6/23/05.
https://doi.org/10.1145/3592533.3592812

the form of pre-allocating and caching policies (e.g., [2, 20, 31, 33,
36, 37]) and sandbox snapshotting in particular [5, 16, 29, 39, 42].
For this sort of experimentation, deploying a full-blown Kuber-
netes stack, including API extensions retrofitting FaaS concepts
into cloud-native workflows, might be superfluous.

For that reason, we propose an alternative design which we find
simpler to implement, extend and debug in scenarios involving
single-node experimentation. We aim to enrich the existing open-
source FaaS ecosystem with a versatile serverless system that offers
a set of mechanisms to facilitate research and development of local
orchestration intelligence. This component should be orthogonal
with higher-level platforms that cater for cluster-level orchestration,
hence also capable of integrating with them.

2 STATE-OF-THE-ART PLATFORMS
We are examining three major open-source systems that enable
FaaS deployments with respect to our prior observations.
vHive. [40] It employs firecracker-containerd [3] to boot function
instances in Firecracker microVMs rather than containers, also
supporting optimized snapshotting. As a CRI [10] implementation,
vHive relies on Kubernetes for cluster orchestration, on top of
which Knative [11] provides the API primitives necessary for en-
abling FaaS deployments. The extensive use of cloud-native com-
ponents makes vHive robust in cases of distributed deployments,
but renders the software stack significantly more complex. Trac-
ing function invocations and platform’s overheads end-to-end can
become cumbersome, especially when such systems are further
extended for various research purposes. Moreover, vHive equates
idle instances with those restored from snapshots. While the latter
have been proved to significantly mitigate cold starts, research in
sandbox caching and keep-alive policies is ongoing and orthogonal
to snapshotting. This, in conjunction with utter reliance on Ku-
bernetes for CPU and memory management, makes vHive more
suitable for research on larger-scale settings.
Apache OpenWhisk. OpenWhisk [6] features a clean, extensible
architecture, which is also the reason why many studies rely on it
for prototype implementations [2, 20, 28, 31, 32, 34, 35, 38, 43–45].
It is simple to deploy due to comprising fewer moving parts. For
instance, it can be deployed independently of Kubernetes, and also
in single-node mode. Despite its numerous benefits, OpenWhisk’s
architecture is entirely focused on using containers as function
instance sandboxes. By default, it is integrated with the docker
CLI [26] and unaware of sandbox snapshotting. Furthermore, being
implemented in Scala raises the engineering effort of integrating

https://orcid.org/0000-0002-9634-2835
https://orcid.org/0000-0002-7965-0510
https://orcid.org/0000-0003-4424-9951
https://orcid.org/0009-0002-0614-4438
https://orcid.org/0000-0001-5496-2430
https://orcid.org/0000-0002-4890-8427
https://doi.org/10.1145/3592533.3592812
https://doi.org/10.1145/3592533.3592812
https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://doi.org/10.1145/3592533.3592812


SESAME ’23, May 8, 2023, Rome, Italy C. Katsakioris, C. Alverti, K. Nikas, S. Psomadakis, V. Karakostas, and N. Koziris

it with a high-level container runtime, like firecracker-containerd,
due to missing components (e.g., TTRPC [15] compiler for JVM).
Kata Containers. As an OCI [19] runtime, Kata [12] does not
provide FaaS semantics by itself. However, through its integration
with higher-level container runtimes (e.g., containerd [14]) it can
be used as a Kubernetes RuntimeClass1, thus enabling Kubernetes
API-extending FaaS platforms (e.g., Knative [11], OpenFaaS [17])
to seamlessly leverage the benefits of VMs. Its clean, VM-centric
architecture makes it a robust solution for production use [30] and
for experimentation at scale. However, support for Firecracker is
currently unimplemented [18]. Besides, by design, Kata has been
primarily versed towards Cloud workload deployments (e.g., via
QEMU [13] or Cloud Hypervisor [7]) rather than FaaS.

Research on intra-node resource management could benefit from
a simpler software stack. Bootstrapping such an effort would in-
clude a clean architectural component on top of a microVM-enabled
container manager, free from the complexity of distributed deploy-
ments. This should improve overall transparency in the system,
thus facilitating research and enabling innovation at lower levels
as well. In light of this, we aspire to design a system which:

• considers Firecracker microVMs and their snapshots as first-
class function execution units in the system;

• focuses on resource management within a single node rather
than cluster-wide orchestration;

• incorporates extensible mechanisms and configurable knobs
to enable research and development of a variety of node-local
algorithms and policies.

3 DESIGN OF FAASCELL
FaaSCell is responsible for responding to clients’ function requests
–incoming presumably from an upper-layer entity– by invoking the
respective user-defined functions. The latter are sandboxed within
microVMs, which:

• may already run (in case of previous invocation(s) and de-
pending on the keep-alive policy in place);

• can be loaded from a microVM snapshot, created during
an earlier invocation and persisted on one of the node’s
available storage devices;

• may need to be booted anew (i.e., cold start).
FaaSCell is therefore responsible for orchestrating these microVMs.
It has to track their state and manage their lifecycle, spawning new
ones and reaping old ones when needed, aiming for low response
latencies and high invocations throughput. Furthermore, FaaSCell
needs to control the allocation of the node’s resources occupied by
those microVMs. While the exact policy for doing so is subject to
active research and thus may vary, the system should provide the
appropriate mechanisms to facilitate this sort of extensibility.

At the bottom of the stack, similar to vHive, FaaSCell uses
firecracker-containerd as the high-level container runtime that
communicates with the Firecracker processes. Through its API,
system components at higher layers can control each microVM’s
lifecycle. We extend firecracker-containerd to support microVM
snapshotting in a resource-efficient manner.

1https://kubernetes.io/docs/concepts/containers/runtime-class/#runtime-class

FaaSCell daemon

uVM

firecracker-containerd

uVM uVMuVM

Response
Sink

Request
Source

Dispatcher VmPool

WorkerWorkerWorkerWorker

Snapshot
Manager

Perf
Manager

Function
Metadata

Store

Keep-Alive
Policy

1

2

3, 9

4

5

6

7

8

Figure 1: Interaction among some of the principal Actors in
FaaSCell during a function invocation.

On top of firecracker-containerd, the FaaSCell daemon is respon-
sible for actually orchestrating the microVMs according to invo-
cation requests. This is where decision-making takes place, hence
where robust yet flexible mechanisms should enable innovation
through intelligent algorithms.

Similar to Kata, we pick Rust for implementing this layer, for
the memory safety and zero-cost abstractions it provides. To cope
with the high-concurrency requirements of its role, the daemon
is designed after the Actor model [22, 23], similar to OpenWhisk:
asynchronous userspace threads, each dedicated to a specific role,
communicating with one another via efficient message passing.

Figure 1 roughly illustrates the interaction of some of the sys-
tem’s principal Actors during a function invocation. A request
flows into the system through a Source, which forwards it to Dis-
patcher 1○. Dispatcher requests VmPool to assign the invocation to
aWorker 2○. To achieve that, VmPool examines the system’s state
and consults any decision-making policy that may be in place, to
allocate the desired resources accordingly and possibly to prepare
the execution environment (e.g., by restoring or spawning new mi-
croVMs and associatedWorkers 3○). Subsequently, Dispatcher can
dispatch the request to the appropriateWorker 4○, who is respon-
sible for communicating to firecracker-containerd the decisions
made earlier by VmPool 5○. When the environment is set (i.e., the
microVM is ready to serve the function at hand), Worker is respon-
sible for forwarding the client’s request to the function 6○, possibly
collecting performance metrics during its execution. The respective
response is then channeled to Sink 7○, to be forwarded further to
any upper-layer system components. Meanwhile,Worker updates

https://kubernetes.io/docs/concepts/containers/runtime-class/#runtime-class


FaaSCell: A Case for Intra-node Resource Management SESAME ’23, May 8, 2023, Rome, Italy

SnapshotManager with any newly collected metrics, possibly query-
ing for information necessary to create a new snapshot for the
function instance 8○. Finally, Worker notifies VmPool of its state 9○,
enabling the enforcement of additional policies (e.g., keep-alive)
that potentially influence decisions in subsequent invocations.

Some of the Actors are designed for extensibility; i.e., based on
interfaces that can have multiple implementations according to the
needs of the experimentation. For instance, alternative implementa-
tions for Source and Sinkmake FaaSCell’s interface versatile, as long
as the actual function request is accessible to Dispatcher. Similarly,
entities interacting with VmPool can be extended, allowing a variety
of keep-alive policies, microVM selection algorithms and function
metadata storage and retrieval.Workers could be extended to use
alternative low-level runtimes, and their associated PerfManagers to
collect different performance metrics during function execution, de-
pending on the research context. NetworkManager abstracts away
the specifics of allocating and setting up any network resources
and rules required to provide connectivity to the microVMs. Finally,
SnapshotManager can implement several algorithms for arranging
sandbox snapshots among storage devices made available.

4 CONCLUSIONS
We advocate and originally design FaaSCell, an intra-node orches-
trator for serverless functions. It aims to enable single-node re-
source management and performance studies, while remaining
compatible with the distributed software stack of FaaS. FaaSCell
could potentially be integrated with Kubernetes and its ecosystem,
or with any other upper-layer component or platform that may be
used for cluster-wide orchestration of FaaS deployments.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.
This work was funded by the European Union under the Horizon
Europe grant 101092850 (project AERO).

REFERENCES
[1] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Iordache, An-

thony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Fire-
cracker: Lightweight Virtualization for Serverless Applications. In Proceedings
of the 17th Usenix Conference on Networked Systems Design and Implementation
(Santa Clara, CA, USA) (NSDI’20). USENIX Association, USA, 419–434.

[2] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. 2022.
Groundhog: Efficient Request Isolation in FaaS. https://doi.org/10.48550/ARXIV.
2205.11458

[3] Inc. or its affiliates Amazon.com. 2023. Firecracker Containerd. Retrieved February
24, 2023 from https://github.com/firecracker-microvm/firecracker-containerd/

[4] Anjali, Tyler Caraza-Harter, and Michael M. Swift. 2020. Blending Containers and
Virtual Machines: A Study of Firecracker and GVisor. In Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (Lausanne, Switzerland) (VEE ’20). Association for Computing Machinery,
New York, NY, USA, 101–113. https://doi.org/10.1145/3381052.3381315

[5] Lixiang Ao, George Porter, and Geoffrey M. Voelker. 2022. FaaSnap: FaaS Made
Fast Using Snapshot-Based VMs. In Proceedings of the Seventeenth European
Conference on Computer Systems (Rennes, France) (EuroSys ’22). Association for
Computing Machinery, New York, NY, USA, 730–746. https://doi.org/10.1145/
3492321.3524270

[6] Apache Software Foundation (ASF). 2023. Open Source Serverless Cloud Platform.
Retrieved February 24, 2023 from https://openwhisk.apache.org/

[7] The Cloud Hypervisor Authors. 2023. Cloud Hypervisor – Run Cloud Virtual
Machines Securely and Efficiently. Linux Foundation. Retrieved February 24,
2023 from https://www.cloudhypervisor.org/

[8] The Cloud-Hypervisor Authors. 2023. Snapshot and Restore. Retrieved February
24, 2023 from https://github.com/cloud-hypervisor/cloud-hypervisor/blob/main/
docs/snapshot_restore.md

[9] The Firecracker Authors. 2023. Firecracker Snapshotting. Retrieved February 24,
2023 from https://github.com/firecracker-microvm/firecracker/blob/main/docs/
snapshotting/snapshot-support.md

[10] The Kubernetes Authors. 2023. Container Runtime Interface (CRI). Retrieved
February 24, 2023 from https://kubernetes.io/docs/concepts/architecture/cri/

[11] The Knative Authors. 2023. Knative is an Open-Source Enterprise-level solution to
build Serverless and Event Driven Applications. Retrieved February 24, 2023 from
https://knative.dev/

[12] The Kata Containers Authors. 2023. Kata Containers – Open Source Container
Runtime Software. Retrieved February 24, 2023 from https://katacontainers.io/

[13] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In 2005
USENIX Annual Technical Conference (USENIX ATC 05). USENIX Association, Ana-
heim, CA. https://www.usenix.org/conference/2005-usenix-annual-technical-
conference/qemu-fast-and-portable-dynamic-translator

[14] The containerd Authors. 2023. containerd – An industry-standard container
runtime with an emphasis on simplicity, robustness and portability. Retrieved
February 24, 2023 from https://containerd.io/

[15] The containerd Authors. 2023. TTRPC – Protocol Specification. Retrieved February
24, 2023 from https://github.com/containerd/ttrpc/blob/main/PROTOCOL.md

[16] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond Startup for
Serverless Computing with Initialization-Less Booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). As-
sociation for Computing Machinery, New York, NY, USA, 467–481. https:
//doi.org/10.1145/3373376.3378512

[17] Alex Ellis and OpenFaaS Ltd. 2023. OpenFaaS – Serverless Functions, Made Simple.
Retrieved February 24, 2023 from https://www.openfaas.com/

[18] Open Infrastructure Foundation. 2023. Github Issue #5268 – Implement a runtime-
rs hypervisor plugin for Firecracker. Retrieved February 24, 2023 from https:
//github.com/kata-containers/kata-containers/issues/5268

[19] The Linux Foundation. 2023. Open Container Initiative. Retrieved February 24,
2023 from https://opencontainers.org/

[20] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping Serverless
Computing Alive with Greedy-Dual Caching. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Ma-
chinery, New York, NY, USA, 386–400. https://doi.org/10.1145/3445814.3446757

[21] Google. 2023. gVisor: an application kernel for containers. Google. Retrieved
February 24, 2023 from https://gvisor.dev/

[22] Carl Hewitt. 2010. Actor Model of Computation: Scalable Robust Information
Systems. https://doi.org/10.48550/ARXIV.1008.1459

[23] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. AUniversalModular ACTOR
Formalism for Artificial Intelligence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence (Stanford, USA) (IJCAI’73). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 235–245.

[24] Amazon Web Services Inc. 2023. AWS Fargate – Serverless compute for containers.
Amazon Web Services Inc. Retrieved February 24, 2023 from https://aws.amazon.
com/fargate/

[25] Amazon Web Services Inc. 2023. AWS Lambda – Run code without thinking about
servers or clusters. Amazon Web Services Inc. Retrieved February 24, 2023 from
https://aws.amazon.com/lambda/

[26] Docker Inc. 2023. Docker run reference. Retrieved February 24, 2023 from
https://docs.docker.com/engine/reference/run/

[27] Eric Johnson. 2022. Reducing Java cold starts on AWS Lambda functions
with SnapStart. Amazon Web Services Inc. Retrieved February 24, 2023
from https://aws.amazon.com/blogs/compute/reducing-java-cold-starts-on-aws-
lambda-functions-with-snapstart/

[28] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2022. Hermod:
Principled and Practical Scheduling for Serverless Functions. In Proceedings of
the 13th Symposium on Cloud Computing (San Francisco, California) (SoCC ’22).
Association for Computing Machinery, New York, NY, USA, 289–305. https:
//doi.org/10.1145/3542929.3563468

[29] Christos Katsakioris, Chloe Alverti, Vasileios Karakostas, Konstantinos Nikas,
Georgios Goumas, and Nectarios Koziris. 2022. FaaS in the Age of (Sub-)𝜇s
I/O: A Performance Analysis of Snapshotting. In Proceedings of the 15th ACM
International Conference on Systems and Storage (Haifa, Israel) (SYSTOR ’22).
Association for Computing Machinery, New York, NY, USA, 13–25. https://doi.
org/10.1145/3534056.3534938

[30] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi Tao, Bin Zha,
Qiang Wang, Weidong Han, and Minyi Guo. 2022. RunD: A Lightweight Secure
Container Runtime for High-density Deployment and High-concurrency Startup
in Serverless Computing. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22). USENIX Association, Carlsbad, CA, 53–68. https://www.usenix.org/
conference/atc22/presentation/li-zijun-rund

[31] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren Nayak,
and Vadim Sukhomlinov. 2019. Agile Cold Starts for Scalable Serverless. In 11th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19). USENIX

https://doi.org/10.48550/ARXIV.2205.11458
https://doi.org/10.48550/ARXIV.2205.11458
https://github.com/firecracker-microvm/firecracker-containerd/
https://doi.org/10.1145/3381052.3381315
https://doi.org/10.1145/3492321.3524270
https://doi.org/10.1145/3492321.3524270
https://openwhisk.apache.org/
https://www.cloudhypervisor.org/
https://github.com/cloud-hypervisor/cloud-hypervisor/blob/main/docs/snapshot_restore.md
https://github.com/cloud-hypervisor/cloud-hypervisor/blob/main/docs/snapshot_restore.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/snapshot-support.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/snapshot-support.md
https://kubernetes.io/docs/concepts/architecture/cri/
https://knative.dev/
https://katacontainers.io/
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://containerd.io/
https://github.com/containerd/ttrpc/blob/main/PROTOCOL.md
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3373376.3378512
https://www.openfaas.com/
https://github.com/kata-containers/kata-containers/issues/5268
https://github.com/kata-containers/kata-containers/issues/5268
https://opencontainers.org/
https://doi.org/10.1145/3445814.3446757
https://gvisor.dev/
https://doi.org/10.48550/ARXIV.1008.1459
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/lambda/
https://docs.docker.com/engine/reference/run/
https://aws.amazon.com/blogs/compute/reducing-java-cold-starts-on-aws-lambda-functions-with-snapstart/
https://aws.amazon.com/blogs/compute/reducing-java-cold-starts-on-aws-lambda-functions-with-snapstart/
https://doi.org/10.1145/3542929.3563468
https://doi.org/10.1145/3542929.3563468
https://doi.org/10.1145/3534056.3534938
https://doi.org/10.1145/3534056.3534938
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund


SESAME ’23, May 8, 2023, Rome, Italy C. Katsakioris, C. Alverti, K. Nikas, S. Psomadakis, V. Karakostas, and N. Koziris

Association, Renton, WA. https://www.usenix.org/conference/hotcloud19/
presentation/mohan

[32] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane
Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel Hag-
imont, Noël De Palma, Bernabé Batchakui, and Alain Tchana. 2021. OFC: An
Opportunistic Caching System for FaaS Platforms. In Proceedings of the Sixteenth
European Conference on Computer Systems (Online Event, United Kingdom) (Eu-
roSys ’21). Association for Computing Machinery, New York, NY, USA, 228–244.
https://doi.org/10.1145/3447786.3456239

[33] Orestis Lagkas Nikolos, Georgios Goumas, and Nectarios Koziris. 2022. Dev-
erlay: Container Snapshots For Virtual Machines. In 2022 22nd IEEE Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid). 11–20.
https://doi.org/10.1109/CCGrid54584.2022.00010

[34] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker: Warming
Serverless Functions Better with Heterogeneity. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association for
Computing Machinery, New York, NY, USA, 753–767. https://doi.org/10.1145/
3503222.3507750

[35] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 205–218. https://www.usenix.
org/conference/atc20/presentation/shahrad

[36] Wonseok Shin, Wook-Hee Kim, and Changwoo Min. 2022. Fireworks: A Fast,
Efficient, and Safe Serverless Framework Using VM-Level Post-JIT Snapshot. In
Proceedings of the Seventeenth European Conference on Computer Systems (Rennes,
France) (EuroSys ’22). Association for Computing Machinery, New York, NY, USA,
663–677. https://doi.org/10.1145/3492321.3519581

[37] Gaetano Somma, Constantine Ayimba, Paolo Casari, Simon Pietro Romano,
and Vincenzo Mancuso. 2020. When Less is More: Core-Restricted Container
Provisioning for Serverless Computing. In IEEE INFOCOM 2020 - IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS). 1153–1159.
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162876

[38] Amoghvarsha Suresh and Anshul Gandhi. 2019. FnSched: An Efficient Scheduler
for Serverless Functions. In Proceedings of the 5th International Workshop on

Serverless Computing (Davis, CA, USA) (WOSC ’19). Association for Computing
Machinery, New York, NY, USA, 19–24. https://doi.org/10.1145/3366623.3368136

[39] Yue Tan, David Liu, Nanqinqin Li, and Amit Levy. 2021. How Low Can You Go?
Practical cold-start performance limits in FaaS. https://doi.org/10.48550/ARXIV.
2109.13319

[40] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. 2021. Benchmarking, Analysis, and Optimization of Serverless Function
Snapshots. In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Virtual,
USA) (ASPLOS ’21). Association for Computing Machinery, New York, NY, USA,
559–572. https://doi.org/10.1145/3445814.3446714

[41] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba
Li, Rui Du, and Yue Cheng. 2021. FaaSNet: Scalable and Fast Provisioning of
Custom Serverless Container Runtimes at Alibaba Cloud Function Compute. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association,
443–457. https://www.usenix.org/conference/atc21/presentation/wang-ao

[42] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable Execution
Optimized for Page Sharing for a Managed Runtime Environment. In Proceedings
of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19).
Association for Computing Machinery, New York, NY, USA, Article 39, 16 pages.
https://doi.org/10.1145/3302424.3303978

[43] Song Wu, Zhiheng Tao, Hao Fan, Zhuo Huang, Xinmin Zhang, Hai Jin, Chen
Yu, and Chun Cao. 2022. Container lifecycle-aware scheduling for serverless
computing. Software: Practice and Experience 52, 2 (2022), 337–352. https://doi.org/
10.1002/spe.3016 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3016

[44] Hanfei Yu, Athirai A. Irissappane, Hao Wang, and Wes J. Lloyd. 2021. FaaSRank:
Learning to Schedule Functions in Serverless Platforms. In 2021 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). 31–40.
https://doi.org/10.1109/ACSOS52086.2021.00023

[45] Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang, and Haibo
Chen. 2023. BeeHive: Sub-Second Elasticity for Web Services with Semi-FaaS Ex-
ecution. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York,
NY, USA, 74–87. https://doi.org/10.1145/3575693.3575752

https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://doi.org/10.1145/3447786.3456239
https://doi.org/10.1109/CCGrid54584.2022.00010
https://doi.org/10.1145/3503222.3507750
https://doi.org/10.1145/3503222.3507750
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1145/3492321.3519581
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162876
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.48550/ARXIV.2109.13319
https://doi.org/10.48550/ARXIV.2109.13319
https://doi.org/10.1145/3445814.3446714
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://doi.org/10.1145/3302424.3303978
https://doi.org/10.1002/spe.3016
https://doi.org/10.1002/spe.3016
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3016
https://doi.org/10.1109/ACSOS52086.2021.00023
https://doi.org/10.1145/3575693.3575752

	1 Motivation
	2 State-of-the-Art Platforms
	3 Design of FaaSCell
	4 Conclusions
	Acknowledgments
	References

