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1 MOTIVATION
Open-source FaaS platforms have recently shown rapid growth,
which is usually manifested as extension or specialization of exist-
ing cloud-native components and systems –mainly over Kubernetes–
since they are provably capable of standing their ground against
production-level needs. Despite its advances, the cloud-native ecosys-
tem has focused mostly on container-based deployments so far.
FaaS workloads’ need for massive colocation [1] without sacrificing
security guarantees, pushes multi-tenancy to its limits.

First, this calls for highly isolated environments, which are tra-
ditionally associated with hardware-accelerated virtualization [1,
4, 21, 24, 25, 41]. Second, the fine-grained management of a node’s
available resources becomes essential, but also challenging because
of FaaS workloads’ characteristics [35]. Invocations tend to be short-
lived, with irregular inter-arrival patterns. Keeping function in-
stanceswarm becomes too expensive in terms of allocated resources,
whereas booting them anew on each invocation imposes prohibi-
tive slowdowns (i.e., cold starts). Lately, both Cloud providers and
researchers consider VM snapshots as a viable mitigation [9, 16, 40].
After booting the function sandbox, its whole state –including its
memory– is captured and persisted on storage. On subsequent in-
vocations, the sandbox can be restored from the snapshot rather
than booted anew, thus drastically improving startup time. Such
mechanisms are being adopted by open-source systems [8, 9] and
Cloud providers [27].

FaaS platforms are by nature distributed. Nevertheless, research
on resource management also entails work on intra-node resource
allocation. This is attested by several serverless studies focusing on
single-node experiments to either investigate problems or evaluate
proposed solutions. Past work generally examines node-local re-
source management, involving CPU, networking or I/O, often in
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the form of pre-allocating and caching policies (e.g., [2, 20, 31, 33,
36, 37]) and sandbox snapshotting in particular [5, 16, 29, 39, 42].
For this sort of experimentation, deploying a full-blown Kuber-
netes stack, including API extensions retrofitting FaaS concepts
into cloud-native workflows, might be superfluous.

For that reason, we propose an alternative design which we find
simpler to implement, extend and debug in scenarios involving
single-node experimentation. We aim to enrich the existing open-
source FaaS ecosystem with a versatile serverless system that offers
a set of mechanisms to facilitate research and development of local
orchestration intelligence. This component should be orthogonal
with higher-level platforms that cater for cluster-level orchestration,
hence also capable of integrating with them.

2 STATE-OF-THE-ART PLATFORMS
We are examining three major open-source systems that enable
FaaS deployments with respect to our prior observations.
vHive. [40] It employs firecracker-containerd [3] to boot function
instances in Firecracker microVMs rather than containers, also
supporting optimized snapshotting. As a CRI [10] implementation,
vHive relies on Kubernetes for cluster orchestration, on top of
which Knative [11] provides the API primitives necessary for en-
abling FaaS deployments. The extensive use of cloud-native com-
ponents makes vHive robust in cases of distributed deployments,
but renders the software stack significantly more complex. Trac-
ing function invocations and platform’s overheads end-to-end can
become cumbersome, especially when such systems are further
extended for various research purposes. Moreover, vHive equates
idle instances with those restored from snapshots. While the latter
have been proved to significantly mitigate cold starts, research in
sandbox caching and keep-alive policies is ongoing and orthogonal
to snapshotting. This, in conjunction with utter reliance on Ku-
bernetes for CPU and memory management, makes vHive more
suitable for research on larger-scale settings.
Apache OpenWhisk. OpenWhisk [6] features a clean, extensible
architecture, which is also the reason why many studies rely on it
for prototype implementations [2, 20, 28, 31, 32, 34, 35, 38, 43–45].
It is simple to deploy due to comprising fewer moving parts. For
instance, it can be deployed independently of Kubernetes, and also
in single-node mode. Despite its numerous benefits, OpenWhisk’s
architecture is entirely focused on using containers as function
instance sandboxes. By default, it is integrated with the docker
CLI [26] and unaware of sandbox snapshotting. Furthermore, being
implemented in Scala raises the engineering effort of integrating
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it with a high-level container runtime, like firecracker-containerd,
due to missing components (e.g., TTRPC [15] compiler for JVM).
Kata Containers. As an OCI [19] runtime, Kata [12] does not
provide FaaS semantics by itself. However, through its integration
with higher-level container runtimes (e.g., containerd [14]) it can
be used as a Kubernetes RuntimeClass1, thus enabling Kubernetes
API-extending FaaS platforms (e.g., Knative [11], OpenFaaS [17])
to seamlessly leverage the benefits of VMs. Its clean, VM-centric
architecture makes it a robust solution for production use [30] and
for experimentation at scale. However, support for Firecracker is
currently unimplemented [18]. Besides, by design, Kata has been
primarily versed towards Cloud workload deployments (e.g., via
QEMU [13] or Cloud Hypervisor [7]) rather than FaaS.

Research on intra-node resource management could benefit from
a simpler software stack. Bootstrapping such an effort would in-
clude a clean architectural component on top of a microVM-enabled
container manager, free from the complexity of distributed deploy-
ments. This should improve overall transparency in the system,
thus facilitating research and enabling innovation at lower levels
as well. In light of this, we aspire to design a system which:

• considers Firecracker microVMs and their snapshots as first-
class function execution units in the system;

• focuses on resource management within a single node rather
than cluster-wide orchestration;

• incorporates extensible mechanisms and configurable knobs
to enable research and development of a variety of node-local
algorithms and policies.

3 DESIGN OF FAASCELL
FaaSCell is responsible for responding to clients’ function requests
–incoming presumably from an upper-layer entity– by invoking the
respective user-defined functions. The latter are sandboxed within
microVMs, which:

• may already run (in case of previous invocation(s) and de-
pending on the keep-alive policy in place);

• can be loaded from a microVM snapshot, created during
an earlier invocation and persisted on one of the node’s
available storage devices;

• may need to be booted anew (i.e., cold start).
FaaSCell is therefore responsible for orchestrating these microVMs.
It has to track their state and manage their lifecycle, spawning new
ones and reaping old ones when needed, aiming for low response
latencies and high invocations throughput. Furthermore, FaaSCell
needs to control the allocation of the node’s resources occupied by
those microVMs. While the exact policy for doing so is subject to
active research and thus may vary, the system should provide the
appropriate mechanisms to facilitate this sort of extensibility.

At the bottom of the stack, similar to vHive, FaaSCell uses
firecracker-containerd as the high-level container runtime that
communicates with the Firecracker processes. Through its API,
system components at higher layers can control each microVM’s
lifecycle. We extend firecracker-containerd to support microVM
snapshotting in a resource-efficient manner.

1https://kubernetes.io/docs/concepts/containers/runtime-class/#runtime-class
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Figure 1: Interaction among some of the principal Actors in
FaaSCell during a function invocation.

On top of firecracker-containerd, the FaaSCell daemon is respon-
sible for actually orchestrating the microVMs according to invo-
cation requests. This is where decision-making takes place, hence
where robust yet flexible mechanisms should enable innovation
through intelligent algorithms.

Similar to Kata, we pick Rust for implementing this layer, for
the memory safety and zero-cost abstractions it provides. To cope
with the high-concurrency requirements of its role, the daemon
is designed after the Actor model [22, 23], similar to OpenWhisk:
asynchronous userspace threads, each dedicated to a specific role,
communicating with one another via efficient message passing.

Figure 1 roughly illustrates the interaction of some of the sys-
tem’s principal Actors during a function invocation. A request
flows into the system through a Source, which forwards it to Dis-
patcher 1○. Dispatcher requests VmPool to assign the invocation to
aWorker 2○. To achieve that, VmPool examines the system’s state
and consults any decision-making policy that may be in place, to
allocate the desired resources accordingly and possibly to prepare
the execution environment (e.g., by restoring or spawning new mi-
croVMs and associatedWorkers 3○). Subsequently, Dispatcher can
dispatch the request to the appropriateWorker 4○, who is respon-
sible for communicating to firecracker-containerd the decisions
made earlier by VmPool 5○. When the environment is set (i.e., the
microVM is ready to serve the function at hand), Worker is respon-
sible for forwarding the client’s request to the function 6○, possibly
collecting performance metrics during its execution. The respective
response is then channeled to Sink 7○, to be forwarded further to
any upper-layer system components. Meanwhile,Worker updates
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SnapshotManager with any newly collected metrics, possibly query-
ing for information necessary to create a new snapshot for the
function instance 8○. Finally, Worker notifies VmPool of its state 9○,
enabling the enforcement of additional policies (e.g., keep-alive)
that potentially influence decisions in subsequent invocations.

Some of the Actors are designed for extensibility; i.e., based on
interfaces that can have multiple implementations according to the
needs of the experimentation. For instance, alternative implementa-
tions for Source and Sinkmake FaaSCell’s interface versatile, as long
as the actual function request is accessible to Dispatcher. Similarly,
entities interacting with VmPool can be extended, allowing a variety
of keep-alive policies, microVM selection algorithms and function
metadata storage and retrieval.Workers could be extended to use
alternative low-level runtimes, and their associated PerfManagers to
collect different performance metrics during function execution, de-
pending on the research context. NetworkManager abstracts away
the specifics of allocating and setting up any network resources
and rules required to provide connectivity to the microVMs. Finally,
SnapshotManager can implement several algorithms for arranging
sandbox snapshots among storage devices made available.

4 CONCLUSIONS
We advocate and originally design FaaSCell, an intra-node orches-
trator for serverless functions. It aims to enable single-node re-
source management and performance studies, while remaining
compatible with the distributed software stack of FaaS. FaaSCell
could potentially be integrated with Kubernetes and its ecosystem,
or with any other upper-layer component or platform that may be
used for cluster-wide orchestration of FaaS deployments.
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