
Grant Agreement No 101092850

RESEARCH AND DEVELOPMENT

(UPBRING AND OPTIMIZATION)

OF AERO CLOUD SERVICES ON THE EU

PROCESSOR V1.0

DELIVERABLE NUMBER: D.5.1

DUE DATE: 30.06.2024

DATE OF SUBMISSION: 19.07.2024

NATURE: OTHER

DISSEMINATION LEVEL: PU

WORK PACKAGE: WP5

LEAD BENEFICIARY UBI

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 2

DOCUMENT CONTROL SHEET

DELIVERABLE TITLE:
RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO

CLOUD SERVICES ON THE EU PROCESSOR V1.0

AUTHORS:
CHRISTOS-ALEXANDROS SARROS, GIANNIS LEDAKIS, VASILEIOS MATSOUKAS

(UBI)

CONTRIBUTORS:
POLYVIOS PRATIKAKIS, ANTHONY CHAZAPIS (FORTH), CHRISTOS

KATSAKIORIS, KONSTANTINOS NIKAS (ICCS)

REVIEWERS: KONSTANTINOS NIKAS (ICCS), POLYVIOS PRATIKAKIS (FORTH)

APPROVED BY: CHRISTOS KOTSELIDIS (UNIMAN), DIONISIOS PNEVMATIKATOS (ICCS)

 DOCUMENT HISTORY

Ver. Date Status Description/Comments
0.1 30.05.2024 Draft Initial version with Table of Contents
0.2 14.06.2024 Draft Section 2 (Cloud Containerization & Orchestration) added by UBI

0.3 19.06.2024 Draft Section 4 (Lightweight VMs & Emerging Serverless Frameworks)
added by ICCS

0.4 21.06.2024 Draft
Section 3 (Acceleration-aware Cloud Scheduling and Deployment
Frameworks) added by FORTH

0.5 25.06.2024 Draft Section 1 (Introduction) and Section 5 (Summary) added by UBI
0.6 26.06.2024 Draft Text refinements in all sections (ALL partners)
0.7 27.06.2024 Draft First full draft, sent for internal review
0.8 01.07.2024 Draft Document reviewed by ICCS. Refined version based on comments.

0.9 02.07.2024 Draft
Document reviewed by FORH. Refined version based on
comments.

1.0 19.07.2024 Final Final version

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 3

DISCLAIMER

AERO has received funding from European Union’s Horizon Europe research and innovation
programme under Grant Agreement No 101092850. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or the granting
authority. Neither the European Union nor the granting authority can be held responsible for them.

This document contains material and information that is proprietary and confidential to the AERO
consortium and may not be copied, reproduced or modified in whole or in part for any purpose without
the prior written consent of the AERO consortium.

Although the material and information contained in this document is considered to be precise and
accurate, neither the Project Coordinator, nor any partner of the AERO Consortium nor any individual
acting on behalf of any of the partners of the AERO Consortium make any warranty or representation
whatsoever, express or implied, with respect to the use of the material, information, method or
process disclosed in this document, including merchantability and fitness for a particular purpose or
that such use does not infringe or interfere with privately owned rights.

In addition, neither the Project Coordinator, nor any partner of the AERO Consortium nor any
individual acting on behalf of any of the partners of the AERO Consortium shall be liable for any
direct, indirect or consequential loss, damage, claim or expense arising out of or in connection with
any information, material, advice, inaccuracy or omission contained in this document.

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 4

TABLE OF CONTENTS

Executive Summary ... 6

List of Abbreviations & Acronyms .. 7

1 Introduction ... 8

2 Cloud Containerization and Orchestration .. 9

2.1 Overview .. 9

2.2 Hardware & Software Specification of Tested Platforms .. 11

2.2.1 Hardware Specifications .. 11

2.3 How to build the technology? ... 12

3 Acceleration-aware Cloud Scheduling and Deployment Frameworks (FORTH) 18

3.1 Overview .. 18

3.2 Hardware & Software Specification of Tested Platforms .. 18

3.2.1 Hardware Specifications .. 18

3.2.2 Software Specifications ... 19

3.3 How to build the technology? ... 19

3.4 How to run? .. 19

4 Lightweight VMs & Emerging Serverless Frameworks (ICCS) ... 21

4.1 Overview .. 21

4.2 Hardware & Software Specification of Tested Platforms .. 21

4.2.1 Hardware Specifications .. 21

4.2.2 Software Specifications ... 22

4.3 How to build the technology? ... 22

4.3.1 State-of-Practice FaaS Stack ... 22

4.3.2 Research FaaS stack ... 24

4.3.3 AERO FunctionBench ... 27

4.3.4 FaaSRail .. 28

4.4 How to run? .. 28

4.4.1 AERO FunctionBench on the FaaS stack .. 28

4.4.2 FaaSRail .. 31

5 Summary .. 32

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 5

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 6

Executive Summary

This report provides the documentation regarding the software artifacts developed for the AERO
cloud services, during the 1st reporting period of the project (M18). We provide the respective
repositories in which the software can be found, along with an overview of the components and
instructions on how to build and run the artifacts. The provided software includes the MAESTRO
cloud orchestrator, the Knot/Exaflow framework and the various components of the FaaS platform
that will be deployed within the AERO project.

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 7

List of Abbreviations & Acronyms

Abbreviation/Acronym Meaning
CNI Container Network Interface
CRD Custom Resource Definitions
CRI Container Runtime Interface
DNS Domain Name System
FaaS Function-as-a-Service
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit
HTTPS Hypertext Transfer Protocol Secure
JDK Java Development Kit
JSON JavaScript Object Notation
K8s Kubernetes
OCI Open Container Initiative
OS Operating System
VM Virtual Machine
VMM Virtual Machine Manager

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 8

1 Introduction

Deliverable D5.1 presents the intermediate release of the AERO software artifacts that have been
developed and optimsed until M18, under the scope of WP5. The objective of this WP is to bring up
and optimse the services selected for cloud management, deployment, monitoring and orchestration
in the context of the EU processor ecosystem.

In this document, we describe the work that has been carried out during the reporting period, and
present how potential users can reproduce the submitted artifacts for the tested hardware platforms.

This deliverable is structured in three main sections (Sections 2-4). In particular:

● Section 2 “Cloud Containerization and Orchestration” focuses on the MAESTRO cloud
orchestration framework, which relies on Kubernetes to deploy containerized applications.

● Section 3 “Acceleration-aware Cloud Scheduling and Deployment Frameworks” focuses on
the ExaFlow/Knot frameworks. ExaFlow is used to accelerate complex cloud-based
workflows and is based on Knot, a Kubernetes frontend with a focus on facilitating data
science activities.

● Section 4 “Lightweight VMs & Emerging Serverless Frameworks”, which focuses on the
deployment and optimisation of a Function-as-a-Service (FaaS) platform.

Each main section is also divided into several subsections that:

● Present an overview of the software components
● Document the hardware and software specifications of the tested software
● Provide instructions on how to build the software
● Provide the necessary steps to run the software

.

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 9

2 Cloud Containerization and Orchestration

2.1 Overview

With respect to the containerization and orchestration aspects of AERO, we focus heavily on
Kubernetes 1(k8s), which acts as the de-facto orchestrator for containerized services. Our final goal is
to bring up Kubernetes to the SIPEARL Rhea processor and demonstrate it in the context of the EU
processor ecosystem. Kubernetes can use different container runtimes (e.g., containerd, cri-o), as long
as the runtime is compatible with the Container Runtime Interface (CRI) API specification2.

Service provisioning and resource management on top of Kubernetes clusters is performed using
UBITECH’s Maestro3 framework. Maestro comprises several components: a GUI, a resource
management service, a deployment management service, a k8s-connector, a backend service, an
Apache Kafka4 and a MariaDB5 database. It should be noted that the Maestro components are
typically not deployed in the same servers as the Kubernetes cluster. Instead, they can be deployed
anywhere since MAESTRO leverages the Kubernetes API to communicate with clusters and manage
the deployments.

Within the AERO project, we are extending MAESTRO’s capabilities in the following directions:

● adding the ability to utilize a wider range of devices contained in the EU processor ecosystem
including hardware accelerators;

● extending its current application model to include any other additional application and device
constraints;

● enabling it to deploy applications that use serverless components (functions) beside
microservices, and

● adding the capability to use lightweight VMs to deploy serverless workloads.

In the 1st reporting period, we have successfully managed to:

i) Extend MAESTRO’s application model to allow for GPU support and specification of
hardware architecture constraints for the deployed cloud services.

ii) Deploy and manage containerized services in ARM and RISC-V devices, using MAESTRO.
iii) Allow for serverless application deployments, by integrating MAESTRO with Knative.

In this deliverable, we document the 1st release of the MAESTRO software that provides the
aforementioned features. In this respect, we focus on the extensions that were developed to support
serverless applications. The required adaptations and testing of the software component are
thoroughly detailed in D6.2.

1 https://kubernetes.io/
2 https://kubernetes.io/docs/concepts/architecture/cri/
3 https://themaestro.ubitech.eu/
4 https://kafka.apache.org/
5 https://mariadb.org/

https://kubernetes.io/
https://kubernetes.io/docs/concepts/architecture/cri/
https://themaestro.ubitech.eu/
https://kafka.apache.org/
https://mariadb.org/

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 10

To deploy and manage containerized services in ARM and RISC-V devices, we enhanced MAESTRO’s
application model the following ways:

When defining a component in MAESTRO, we provide the option to specify the corresponding CPU
architecture according to the target deployment device. This enhancement expands beyond the initial
support for x86 and amd64 architectures, adding compatibility for ARM64 and RISC-V devices.
Consequently, during deployment, the MAESTRO orchestrator is able to fetch the appropriate
architecture version of the Docker6 image.

Additionally, we have introduced a new feature that allows the user to configure service placement
prior to deployment using Kubernetes cluster labels. These labels determine the characteristics, such
as the architecture of the device, the operating system, the hostname, on which the deployment will
occur. The labels are defined in the Kubernetes cluster and retrieved by MAESTRO. This enables the
user to specify the target architecture, host, operating system, or any other criteria that differentiate
the deployment environment.

We also enhanced MAESTRO so that a user is able to use GPUs for hardware acceleration.
Specifically, we allow users to define if they want their component to be GPU-Enabled or not. When
enabling GPU option, the Kubernetes deployment specifications are extended appropriately to
request GPU resources to run this service.

Moreover, we enhanced MAESTRO’s orchestration features for serverless workloads. To achieve this,
we rely on Knative7. Knative is an open-source platform that extends Kubernetes to manage
serverless workloads, providing a powerful framework for building, deploying, and managing modern
applications. It simplifies the development of container-based applications by automating many of
the complexities associated with scaling, routing, and event-driven processing. The core architecture
of Knative comprises two broad components, Serving8, and Eventing9 that run over an underlying
Kubernetes infrastructure. Knative Serving10 allows us to deploy containers that can scale
automatically as required. It builds on top of Kubernetes and a Network Layer by deploying a set of
objects as Custom Resource Definitions11 (CRDs). Knative Eventing12 works with custom resources
like Source, Broker, Trigger, and Sink. Source is the component that emits events to the Broker. The
Broker acts as the hub for the events. These events can then be filtered based on any attribute using
a Trigger, and subsequently routed to a Sink13.

The Knative integration signifies a major upgrade in MAESTRO orchestration capabilities, enabling
users to deploy, manage, and scale serverless applications seamlessly. The integration of MAESTRO

6 https://www.docker.com/
7 https://knative.dev/
8 https://knative.dev/docs/serving/
9 https://knative.dev/docs/eventing/
10 https://knative.dev/docs/serving/architecture/
11 https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
12 https://knative.dev/docs/eventing/
13 https://knative.dev/blog/articles/get-started-knative-eventing/

https://www.docker.com/
https://knative.dev/
https://knative.dev/docs/serving/
https://knative.dev/docs/eventing/
https://knative.dev/docs/serving/architecture/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://knative.dev/docs/eventing/
https://knative.dev/blog/articles/get-started-knative-eventing/

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 11

with Knative is accomplished by utilizing the dedicated knative-client14 library for Java Spring
framework.

The addition of Knative support in MAESTRO brings several key advantages. Firstly, it offers event-
driven autoscaling, which dynamically adjusts the number of active instances based on real-time
demand, thus optimising resource utilization and cost efficiency. Additionally, it enhances the agility
and flexibility of application deployment, as users can now deploy services directly within the
MAESTRO environment. Finally, this integration provides a unified platform for managing both
traditional and serverless applications, enabling a cohesive and streamlined operational workflow.
Overall, the integration with Knative empowers our users to harness the full potential of serverless
architecture while leveraging MAESTRO's comprehensive orchestration capabilities.

MAESTRO is currently a closed-source project. The implementation of the application model that
supports GPU, ARM and RISC-V hardware is part of the closed-source code. However, it is in our
plans to open-source it by the end of the project. Moreover, we have released the new Knative
Controller service (which provides the integration of MAESTRO with Knative) as an open-source
project under an Apache 2.0 license. The project development resources can be found in the AERO
Github repository under https://github.com/AERO-Project-EU/maestro-serverless-controller.

2.2 Hardware & Software Specification of Tested Platforms

2.2.1 Hardware Specifications

Table 1. Hardware specifications of tested platform for MAESTRO

Hardware Specifications
Ampere Altra Mt Jade 2U Server ARM Neoverse N1 (160 cores), 512GB RAM
4x StarFive VisionFive 2 SBC RISC-V JH7110 SoC (4+2 cores), 8GB RAM

2.2.2 Software Specifications

To leverage MAESTRO's capabilities for deploying serverless Knative services, we have developed a
dedicated Knative Controller. For its development we have used the Quarkus15 framework, which is
being optimised by RHAT for deployment on ARM servers in the context of AERO. The controller
itself is a microservice that serves as a REST client to communicate with the MAESTRO deployment
controller. Therefore, all the requests for Knative deployments first come through this Quarkus-based
controller, which invokes the MAESTRO deployment controller, and then the results are forwarded
back to the Quarkus microservice, and reach again the end-user. The Knative Controller is built with
Java 17 and Quarkus 3.12.0, featuring a Swagger16 documentation page where the controller
endpoints are documented using the OpenAPI17 Specification 3.1.0. The project's README.md file
includes detailed instructions on how to build and run the controller as a .jar file, a binary, or a
containerized image using Docker.

14 https://mvnrepository.com/artifact/io.fabric8/knative-client
15 https://quarkus.io/
16 https://swagger.io/
17 https://spec.openapis.org/oas/v3.1.0

https://github.com/AERO-Project-EU/maestro-serverless-controller
https://mvnrepository.com/artifact/io.fabric8/knative-client
https://quarkus.io/
https://swagger.io/
https://spec.openapis.org/oas/v3.1.0

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 12

Table 2. Software specifications of tested platform for MAESTRO

Software Specifications
JDK 1.8.0_301
Spring Boot 2.0.1
Maven 3.8.6
Docker 26.1.4
Docker compose 2.27
Kubernetes 1.28.0
Knative 1.14.1
OS Ubuntu 20.04 LTS

Table 3. Software specifications of tested platform for Knative Controller

Software Specifications
JDK 17
Quarkus 3.12.0
Maven 3.9.6
Docker 26.1.4
Docker compose 2.27
Kubernetes 1.28.0
Knative 1.14.1
OS Ubuntu 20.04 LTS

2.3 How to build the technology?

In order to build and run MAESTRO, users can follow these steps:

Prerequisites:

● JDK 1.8.0_latest
● Maven 3.x
● Docker 18.03 or higher
● Docker Compose 1.18 or higher

Before moving on, users should verify that they have the required JDK and Maven version using the
following shell commands:

$ mvn -version
$ java -version
$ javac -version
$ docker --version
$ docker-compose --version (or docker compose version)

Clone the repo:

Fetch the repository using: git clone git@gitlab.ubitech.eu:cs3/rnd/aero/aero-maestro.git

Change permissions:

Grafana folder AND subfolders used as volume needs to change its permission from 715 to 717
before spawning the framework:

mailto:git@gitlab.ubitech.eu:cs3/rnd/aero/aero-maestro.git

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 13

$ sudo mkdir -p /data/maestro/grafana/data
$ sudo mkdir -p /data/maestro/grafana/logs
$ sudo chmod 717 /data/maestro/grafana/data
$ sudo chmod 717 /data/maestro/grafana/logs

In order to build the microservices and run the project user must:

1. Move to project home folder:

$ cd aero-maestro (project home folder)

2. Copy external dependencies in maven folder:

$ cp /aero-maestro/ext-deps/maven-libraries/settings.xml pathToMavenFolder/./m2

3. Build project microservices:

$ mvn clean install

4. Build containerized services:

$ cd aero-maestro/framework/development/aero
$ docker-compose -f docker-compose-build.yml build

5. Create an .env file as in the .env.example and set variables accordingly:

$ mv .env.example .env
$ vi .env

6. Run containerized services

$ docker compose up -d

When the docker services are ready, the user can use the frontend UI at http://serverIP:3000, where
‘serverIP’ is the one you set in the ‘.env’.

Note that, this docker compose file also includes the knative controller docker service for ease of use.

Steps for building and running the Knative Controller

In order to build and run the Knative Controller, the user can follow these steps:

1. Packaging and running the application:

The application can be packaged using:

$./mvnw package

It produces the ‘quarkus-run.jar’ file in the ‘target/quarkus-app/’ directory. Be aware that it’s not an
über-jar as the dependencies are copied into the ‘target/quarkus-app/lib/’ directory. The application
is now runnable using:

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 14

$ java -jar target/quarkus-app/quarkus-run.jar

To build an über-jar, execute the following command:

$./mvnw package -Dquarkus.package.type=uber-jar

The application, packaged as an über-jar, is now runnable using:

$ java -jar target/*-runner.jar

The user can create a native executable using:

$./mvnw package -Pnative

Or, if GraalVM is not installed, the user can run the native executable build in a container using:

$./mvnw package -Pnative -Dquarkus.native.container-build=true

The user can then execute the native executable with:

$./target/knative-serverless-controller-{version}-runner

Then user users can directly use the available containerized version:

There are two docker-compose files:

- docker-compose.yml which will use the dev profile properties of the project

- docker-compose.prod.yml which can be used along with .env file (as the one in the .env.example)
to set specifically the parameters of the project.

Then run:

$ docker compose up -d

2.4 How to run?

In this Section, we provide some information on how a MAESTRO user can leverage the new
functionalities implemented in the context of the AERO project. i.e.: i) GPU Hardware acceleration,
ii) deployments on ARM and RISC-V hardware and iii) deployment of serverless functions

In order to declare that a service should be run on a GPU, we have to enable the “GPU-Enabled”
option for this component through the Components menu and editing the corresponding component.

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 15

Figure 1. Request GPU placement resources

To select the desired component architecture, you can navigate to the Components menu and select
the architecture for the corresponding component:

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 16

Figure 2. Set component CPU architecture

When configuring the deployment, the user can press on the component symbol and open the
configuration menu. From there, the user can navigate to the Node Labels Affinity tab and select the
desired node labels for the corresponding component.

Figure 3. Select Kubernetes node labels for the component deployment

To deploy a serverless application, user can navigate to the MAESTRO-UI, default listening on port
3000. Select an Application to deploy.

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 17

Figure 4. MAESTRO Application view

Then user set the application name and the provider to the Knative Provider and proceed to
deployment.

Figure 5. MAESTRO Application Instance configuration before deployment

The procedure has now started and a dedicated namespace has been created in the Kubernetes
Cluster. All the resources can be seen under that namespace. When the service deployment is no
longer needed, a user can click “Un-deploy” to clear all the resources.

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 18

3 Acceleration-aware Cloud Scheduling and Deployment
Frameworks (FORTH)

3.1 Overview

This task focuses on exploiting the ExaFlow framework to accelerate complex cloud-based
workflows on the EU processor/cloud ecosystem. ExaFlow is based on Knot, a Kubernetes frontend,
with a focus on facilitating data science activities. It supplies a web-based landing page for working
on a Kubernetes cluster, allowing users to launch services from customizable templates, manage their
container images, and launch notebooks for writing portable code. Behind the scenes, Knot manages
user accounts, wires up relevant storage to the appropriate paths inside running containers, securely
provisions multiple services under a single externally-accessible HTTPS endpoint, while keeping
isolated, per-user namespaces at the Kubernetes level, and provides identity services for OAuth
2.0/OIDC-compatible applications. The Knot installation includes JupyterHub18, Argo Workflows19,
Harbor20, and Grafana21, all accessible through the dashboard, taking advantage of the single sign-
on feature. ExaFlow extends Knot with support for hardware architectures based on the ARM
instruction set (like Rhea), custom services for the AERO project and specialized Kubernetes plug-ins
for managing accelerators.

Knot is available at https://github.com/AERO-Project-EU/knot, under an Apache-2.0 open-source
license.

3.2 Hardware & Software Specification of Tested Platforms

3.2.1 Hardware Specifications

ExaFlow/Knot has been tested in the following ARM-based hardware.

Table 4. Hardware specifications of tested platorm for ExaFlow/Knot

Hardware Specifications
Ampere Altra NeoverseN1 (160 cores), 256 GB RAM
MacBook Pro M1 (2020) Apple M1 (4+4 cores), 16 GB RAM

QEMU
QEMU 7.2 ARM VM (AArch64) running on MacBook Pro M1 (2020)
macOS 13.6.7 (4 CPUs/8 GB RAM)

Raspberry Pi 4 ARM Cortex-A72 (4 cores), 8 GB RAM

We also plan to test on AWS Graviton instances, as well as NVIDIA Grace.

18 https://jupyter.org/hub
19 https://argoproj.github.io/workflows/
20 https://goharbor.io/
21 https://grafana.com/

https://github.com/AERO-Project-EU/knot
https://jupyter.org/hub
https://argoproj.github.io/workflows/
https://goharbor.io/
https://grafana.com/

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 19

3.2.2 Software Specifications

ExaFlow/Knot requires a working Kubernetes installation and optionally CUDA22 for NVIDIA GPU
support.

Table 5. Software specifications of tested platform for ExaFlow/Knot

Software Specifications
Kubernetes version >= 1.27.x
CUDA (optional) version >= 10.2

3.3 How to build the technology?

We provide a comprehensive Makefile to expose all available build actions via simple commands.

To build the Knot container image locally, run:

$ make container

To test the container in a local Kubernetes environment, run:

$ make test-sync

Then point a browser to https://<your IP address>.nip.io and login.

To tear down the test environment:

$ make test-destroy

To build and push the container image, run:

$ make container-push

To change the version, edit VERSION. Other variables, like the kubectl version and the container
registry name are set in the Makefile. For example, the environment variable REGISTRY_NAME points
to the Docker namespace that will host the container image (username).

To build and push the container image in the AERO namespace (for example), run:

$ REGISTRY_NAME=aero make container-push

The Makefile uses buildx to build the Knot container for multiple architectures (linux/amd64 and
linux/arm64). Also, a GitHub action automatically builds and releases a new image when a new
version tag is pushed. This also triggers publishing the corresponding Knot dashboard Helm chart.

3.4 How to run?

To deploy Knot in a server, users need a typical Kubernetes installation, Helm23, the Helm diff plugin,
and Helmfile installed.

Apply the the latest Knot helmfile.yaml with:

22 https://developer.nvidia.com/cuda-toolkit
23 https://helm.sh/

https://developer.nvidia.com/cuda-toolkit
https://helm.sh/

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 20

$ export KNOT_HOST=example.com

$ helmfile -f git::https://github.com/AERO-Project-EU/knot.git@helmfile.yaml sync

The variable KNOT_HOST is necessary. By default, we use cert-manager to self-sign a wildcard
certificate for the given host. Users need to make sure that at the DNS level, both the domain name
and its wildcard point to their server (i.e., both example.com and *.example.com). If the user already
knows their external IP address, they can use a nip.io name (i.e., set KNOT_HOST to <user IP
address>.nip.io).

If there already is a certificate, it should be placed in a secret in the ingress-nginx namespace with:

$ kubectl create namespace ingress-nginx

$ kubectl create secret tls -n ingress-nginx ssl-certificate --key <key file> --cert <crt
file>

And then skip the self-signing process at installation by specifying --state-values-set
ingress.createSelfsignedCertificate="false" to helmfile, as follows:

$ export KNOT_HOST=example.com

$ helmfile -f git::https://github.com/AERO-Project-EU/knot.git@helmfile.yaml --state-
values-set ingress.createSelfsignedCertificate="false" sync

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 21

4 Lightweight VMs & Emerging Serverless Frameworks
(ICCS)

4.1 Overview

In the context of AERO, ICCS will deploy and optimise a Function-as-a-Service (FaaS) platform on
the upcoming Rhea processor. However, as Rhea is not available yet, this deliverable entails the
results of the development on similar processors, namely Ampere Altra Max (ARM Neoverse N1
cores) and NVIDIA’s GraceHopper (ARM Neoverse V2 cores).

As defined in deliverable D6.1, the FaaS platform comprises several software components. This
deliverable provides contributions on the following levels:

➢ FaaS software stack: The majority of the software components are leveraged as distributed by
their corresponding open-source projects. This deliverable provides the necessary patches and
configurations to allow deployment on the selected hardware platforms.

➢ Serverless workloads: To be able to exercise and demonstrate the FaaS platform, ICCS has
ported FunctionBench24, one of the first publicly available realistic FaaS workload suites.

➢ Serverless load generator: The serverless ecosystem currently lacks a unified evaluation
methodology based on realistic, production-level FaaS workloads. ICCS has developed
FaaSRail, a load generator that attempts to fill this gap by combining open source, real-world
FaaS workloads with public traces of commercial FaaS platforms to generate representative
series of requests suitable for evaluating serverless prototypes.

All these contributions are released as open source (licensed under Apache 2.0.) and are available in
the AERO GitHub repository space at the following links:

➢ FaaS software stack patches: https://github.com/AERO-Project-EU/faas_stack
➢ Serverless workloads: https://github.com/AERO-Project-EU/aerofb
➢ Serverless load generator: https://github.com/AERO-Project-EU/faasrail

4.2 Hardware & Software Specification of Tested Platforms

The contributed components have been developed and deployed on two alternative ARM-based
platforms, an Ampere Altra server and an NVIDIA GraceHopper system, which have 160 ARMv64
Neoverse N1 cores and 72 ARMv64 Neoverse V2 cores, respectively.

4.2.1 Hardware Specifications

The hardware characteristics of the tested platform are described in Table 6. Hardware specifications
of tested platform for the FaaS platform.

24 https://github.com/ddps-lab/serverless-faas-workbench

https://github.com/AERO-Project-EU/faas_stack
https://github.com/AERO-Project-EU/aerofb
https://github.com/AERO-Project-EU/faasrail
https://github.com/ddps-lab/serverless-faas-workbench

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 22

Table 6. Hardware specifications of tested platform for the FaaS platform

Hardware Specifications
System Ampere Altra Mt Jade NVIDIA GraceHopper

CPU 2x Ampere Altra (Q80-30),
160x ARMv8.2-A Neoverse N1 Cores

72x ARMv64 Neoverse V2

RAM 4x 64GiB Samsung DDR4-3200 576GB (480GB ECC LPDDR5X, 96GB
HBM3)

Disk Samsung 1TB M.2 PCIe 3.0 x4 NVMe SSD Intel 1.92TB E1.S PCIe 4.0 x4 NVMe SSD

4.2.2 Software Specifications

Software requirements for this task can be classified as either components of the FaaS stack to be
deployed, or utilities that are put into use only for building some of the former.

Note that any dependencies of stack components are extensively documented in their corresponding
upstream installation documentation/guides, and hereby omitted. Similarly, Python package
dependencies of AERO’s FunctionBench port are listed along with their exact revision tag at the
organization’s code repository in the requirements.yml file, while FaaSRail’s Rust crates can be
found at the associated Cargo.toml file.

Table 7. Software specifications for the FaaS platform

Software Specifications
Deployed FaaS Stack Components

OS kernel Linux 5.10.* / 5.15.* / 6.6.*
OCI runtimes runc: 1.0.0~rc93+ds1 / 1.1.12; against spec 1.0.2-dev
 kata-static 3.3.0
Container Manager / CRI containerd 1.7.*
Orchestrator Kubernetes 1.29.* or 1.30.*
CNI kube-flannel 1.24.*
FaaS Platform Knative 1.13.* with Kourier 1.13.* or 1.14.*
VMM Firecracker 1.6.0 (+ICCS’s patch for Neoverse V2)

Development-only Utilities
Local Container Platform Docker 26.*
Python VM CPython 3.12.*
Rust >= 1.79.0
MinIO Server >= RELEASE.2023-09-20T22-49-55Z

4.3 How to build the technology?

4.3.1 State-of-Practice FaaS Stack

To foster the wider adoption of its bleeding-edge FaaS stack, AERO strives to minimize invasive
modifications of the modules in its stack. As a result of this effort, most software components can be
deployed as distributed by their corresponding open-source projects, listed in Table 7 and
documented in their respective code repositories, without building them from source.

Nevertheless, upbringing the FaaS stack for AArch64 architectures still necessitates certain
modifications. In the scope of this deliverable, these modifications entail only a single code patch to

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 23

Firecracker VMM’s source tree, which can be applied in a single command. The patch file itself can be
found in the AERO organization’s code repository at https://github.com/AERO-Project-
EU/faas_stack/blob/main/firecracker-patches/fc_v1.6.0-aero.patch. To clone the Firecracker git,
download ICCS’ patch and apply it, the following commands need to be executed:

$ git clone --depth 1 --branch v1.6.0 \

> https://github.com/firecracker-microvm/firecracker.git

$ cd firecracker

$ wget https://raw.githubusercontent.com/AERO-Project-EU/faas_stack/main/firecracker-
patches/fc_v1.6.0-aero.patch

$ git apply fc_v1.6.0-aero.patch

To subsequently build the patched firecracker binary from the same working directory (i.e., the root
of the Firecracker source tree), run:

$ tools/devtool build --release

The resulting compiled and statically-linked binary can then be found, among others, under
build/cargo_target/aarch64-unknown-linux-musl/release/, and can be used to replace the
original firecracker binary distributed with kata-static. The patching procedure is identical in the
case of vHive’s Firecracker fork, currently used as AERO’s research FaaS stack and discussed in
Section 4.3.2.

AERO uses the stock kata-static distribution, provided by the open-source Kata Containers project
itself. Kata is deployed according to the official documentation, using Firecracker as the VMM
(“hypervisor” in terms of Kata Containers’ documentation). AERO employs containerd as its FaaS
stack’s high-level node-local container manager. To provide Firecracker VMs with container root
filesystems, containerd has to be configured with a working device-mapper snapshotter, which takes
advantage of host kernel’s dm-thinpool and dm-snapshot mechanisms to expose these rootfs in the
form of block devices. Furthermore, containerd has to be configured with Firecracker-based Kata
Containers as one of its available underlying OCI runtimes.

Apart from being the integration point of Kata Containers to the FaaS stack, containerd also acts as
the CRI implementation of AERO’s orchestrating component (i.e., any Kubernetes distribution, or any
Kubernetes API-compatible alternative). In the scope of this deliverable, AERO deploys a standard
(vanilla) Kubernetes cluster using kube-flannel as its CNI plugin, according to the official
documentation. Moreover, to expose Kata Containers as an OCI runtime option for Kubernetes, we
define a new Kubernetes RuntimeClass, which is shown in Figure 6.

Subsequently, AERO deploys Knative on top of Kubernetes, by following the standard installation
instructions provided by the upstream project documentation. We use Knative’s purpose-built
networking layer implementation, Kourier. Furthermore, we configure Knative’s control plane to
employ sslip.io for setting up Functions’ DNS, to make them easily reachable from both inside and
outside the Kubernetes cluster. Finally, we set up Knative’s associated extension flag to allow
specifying the desired underlying Kubernetes RuntimeClass on a per Knative Service basis, as
described in the official project’s documentation.

https://github.com/AERO-Project-EU/faas_stack/blob/main/firecracker-patches/fc_v1.6.0-aero.patch
https://github.com/AERO-Project-EU/faas_stack/blob/main/firecracker-patches/fc_v1.6.0-aero.patch

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 24

Figure 6. The Kubernetes RuntimeClass that exposes Kata Containers as an OCI runtime option

Figure 7. Created Kubernetes API Objects and Pods

When everything is configured, several Kubernetes API Objects should be created, and a number of
Pods (mostly related to the various control planes in question) should be deployed to the cluster, as
depicted in Figure 7. Details about these configurations can be found in the code repository, along
with the configuration files themselves.

4.3.2 Research FaaS stack

As discussed in Deliverable D6.1, we intend to use a vHive-based research stack to showcase
snapshot-based optimisations. The source code and setup script files distributed by vHive25 can be
used to setup a FaaS stack with Knative on top of Kubernetes that uses not only containerd, but also
firecracker-containerd26, thus enabling the use of Firecracker, a VMM that supports VM snapshotting.

At the time of writing, the provided scripts support the AArch64 architecture only for the stock-only
setup, i.e., the setup that uses containerd and not firecrackaer-containerd. Hence, we elaborate below
on the steps required to setup vHive with firecracker-containerd on AArch64 systems. More
specifically, we setup vHive on the NVIDIA GraceHopper platform listed in Table 6.

Starting with a vanilla Ubuntu 22.04 with Linux kernel v.6.5.0-1022-nvidia-64k, we mainly follow
the steps provided in the quickstart guide27 in the vHive repository.

25 https://github.com/vhive-serverless/vHive
26 https://github.com/vhive-serverless/firecracker-containerd
27 https://github.com/vhive-serverless/vHive/blob/main/docs/quickstart_guide.md

https://github.com/vhive-serverless/vHive
https://github.com/vhive-serverless/firecracker-containerd
https://github.com/vhive-serverless/vHive/blob/main/docs/quickstart_guide.md

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 25

$ git clone https://github.com/vhive-serverless/vHive.git

$ cd vHive

First, we build the setup tool and run the setup_node command:

$ pushd scripts && go build –o setup_tool && popd

$ cd scripts

$./setup_tool setup_node firecracker

This script performs the basic setup of our node, i.e., installs the required pacakges and binaries,
setups basic networking, etc. Unfortunately, the firecracker and firecracker-containerd binaries are
only provided for x86_64 systems, and therefore they need to be built from sourse fo AArch64
systems.

$ git clone https://github.com/vhive-serverless/firecracker-containerd

$ cd firecracker-containerd

$ make all-in-docker

$ cp ./runtime/containerd-shim-aws-firecracker ./firecracker-
control/cmd/containerd/firecracker-containerd ./firecracker-
control/cmd/containerd/firecracker-ctr /usr/local/bin/

$ git submodule update --init --recursive _submodules/firecracker

$ cd _submodules/firecracker

$ git checkout tags/v1.4.1

At this point we need to apply the patch for Firecracker on AArch64 systems, as described in Section
4.3.1. Once this is done, we can proceed with building Firecracker and the rest of the setup.

$ cd ../../

$ make firecracker (an error may occur here but we can ignore it)

$ cp _submodules/firecracker/build/cargo_target/aarch64-unknown-linux-
musl/release/firecracker _submodules/firecracker/build/cargo_target/aarch64-unknown-
linux-musl/release/jailer /usr/local/bin/

$ cat << EOF > /etc/containerd/config.toml

version = 2

[plugins]

 [plugins."io.containerd.grpc.v1.cri"]

 [plugins."io.containerd.grpc.v1.cri".cni]

 bin_dir = "/usr/lib/cni"

 conf_dir = "/etc/cni/net.d"

 [plugins."io.containerd.internal.v1.opt"]

 path = "/var/lib/containerd/opt"

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc]

 runtime_type = "io.containerd.runc.v2"

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options]

EOF

https://github.com/vhive-serverless/vHive.git
https://github.com/vhive-serverless/firecracker-containerd

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 26

At this point we need to build the rootfs image and the kernel that will run inside the Firecracker
microVM:

$ cd firecracker-containerd

$ make image

$ cp tools/image-builder/rootfs.img /var/lib/firecracker-containerd/runtime/default-
rootfs-aarch64.img

$ cd _submodules/firecracker

$ cp ../../kernel-configs/microvm-kernel-aarch64-5.10.config .

$./tools/devtool -y build_kernel --config ./microvm-kernel-aarch64-5.10.config

$ cd ../../

$ cp _submodules/firecracker/build/kernel/linux-5.10/vmlinux-5.10-aarch64.bin
/var/lib/firecracker-containerd/runtime/

We then need to create the directory for the CNI K8s plugin:

$ mkdir /usr/lib/cni

$ cp /opt/cni/bin/* /usr/lib/cni/

Next, we setup and configure containerd’s device mapper snapshotter, which is used to create block
devices for the microVMs:

$ cd vHive/scripts

$./setup_tool create_devmapper

At this point, we can start containerd, firecracker-containerd and the vHive daemon:

$ containerd &> containerd.log &

$ firecracker-containerd –config /etc/firecracker-containerd/config.toml &> firecracker-
containerd.log &

$ cd vHive

$ go build

$./vhive &> vhive.log &

As all daemons are now running successfully, we can create our cluster, e.g., a single node cluster:

$ cd vHive/scripts

$./setup_tool create_one_node_cluster

At this point, as shown in Figure 8, the K8s pods are up and running:

$ export KUBECONFIG=/etc/kubernetes/admin.conf

$ kubectl get pods -A

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 27

Figure 8. Kubernetes pods running for the research FaaS stack

4.3.3 AERO FunctionBench

Functions in the popular FunctionBench FaaS benchmarking suite are originally written in Python.
Python is an interpreted language; therefore, the Functions do not need to be built. However, to
efficiently distribute them and to use them in a complex FaaS stack, they need to be packaged into an
OCI (or Docker) image. To do so, AERO provides a set of Dockerfiles and Makefiles that automate this
procedure. To fetch the source code, one may issue:

$ git clone https://github.com/AERO-Project-EU/aerofb.git

First, since all Function images use a common base, we need to package their base images. To do
that, from the root of AERO FunctionBench source tree, we can issue:

$ make base-images

After creating the OCI images, we can proceed to packaging all AERO FunctionBench Functions, by
issuing the following in the same working directory as previously:

$ make OWNER=AERO-Project-EU

By the time this step finishes, all OCI images have been built, and they are locally stored by Docker
daemon. However, this may not suffice; to ease their distribution and make them easily reachable, we
can push each created image to an OCI image registry (e.g., Docker Hub, GitHub Container Registry,
etc). To do that, we may issue:

$ docker push ghcr.io/AERO-Project-EU/aerofb-<BENCHMARK_NAME>:0.0.1

Note that most of these arguments are configurable through the top-level Makefile, so that the
packaging procedure remains flexible enough for local development.

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 28

4.3.4 FaaSRail

While upbringing the serverless ecosystem, AERO identified that a unified evaluation methodology
based on realistic, production-level FaaS workloads is currently missing. To this end, ICCS has
developed FaaSRail, a load generator that attempts to fill this gap by combining open source, real-
world workloads from open-source FaaS benchmarking suites with public traces of commercial FaaS
platforms to generate representative series of requests suitable for evaluating serverless prototypes.

To fetch and build FaaSRail one can issue:

$ git clone https://github.com/AERO-Project-EU/faasrail.gitmala

$ cd faasrail/faasrail-loadgen

$ cargo build --profile=release

4.4 How to run?

4.4.1 AERO FunctionBench on the FaaS stack

The AERO FunctionBench Functions can be deployed, either as standalone containers, or as Knative
Services on any Knative-compatible FaaS stack, such the AERO state-of-practice and research stacks.

To be able to deploy FunctionBench Functions’ OCI images anywhere, we first have to make them
available for distribution through an OCI image registry. AERO has selected to host these images in
the GitHub Container Registry, along with the source code repository, built and pushed in a multi-
architecture setup via GitHub’s CI, GitHub Actions. All AERO FunctionBench hosted OCI images can
be viewed at https://github.com/orgs/AERO-Project-EU/packages?repo_name=aerofb.

To locally deploy a FunctionBench function in a standalone fashion, we can use Docker (or even plain
containerd, using a command line client like nerdctl). For example, to deploy the video_processing
Function, we can issue:

$ docker run --rm -it ghcr.io/aero-project-eu/aerofb-video_processing:0.0.1

An example output of this deployment (including the pulling of the OCI image from the GitHub
Container Registry repository of AERO) is shown in Figure 9. Note that the command above deploys
the Function in a plain container, using runc as its underlying OCI runtime. To deploy it using the kata-
fc OCI runtime, the runtime has to be specified as allowed by the command line client in use. For
example, Figure 10 shows the equivalent to the above command, but this time using the Kata
Containers over Firecracker VMM runtime, along with the respective output, which also proves the
successful deployment in a microVM (e.g., notice the difference in Linux kernel versions in the output).

To deploy AERO FunctionsBench Functions on a Knative-based FaaS stack, like AERO’s both state-
of-practice and research stacks, the Functions have to be represented as Knative Services. AERO
distributes such Knative Service definitions for the Functions adopted from FunctionBench, in the form
of YAML files that can be found in the associated code repository, at https://github.com/AERO-
Project-EU/aerofb/tree/main/tools/knative/svc.

https://github.com/AERO-Project-EU/faasrail.git
https://github.com/orgs/AERO-Project-EU/packages?repo_name=aerofb
https://github.com/AERO-Project-EU/aerofb/tree/main/tools/knative/svc
https://github.com/AERO-Project-EU/aerofb/tree/main/tools/knative/svc

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 29

Figure 9: Output of deploying the video_processing Function using runc

Figure 10: Output of deploying the video_processing Function using the kata-fc OCI runtime

An example of such a file is depicted in Figure 11. We observe that AERO provides two definitions
for each Function: one that allows deployment over plain runc (using operating system-level
virtualization; i.e., traditional containers), and another that allows deployment over the kata-fc
RuntimeClass that was earlier defined in the Kubernetes cluster, after carefully setting up and
configuring the Kata Containers project using Firecracker VMM as the hypervisor of choice.

Note that, similar to FunctionBench, some of the AERO FunctionBench Functions attempt to
download their input from an AWS S3-compatible object store through a URL provided in their
invocation request. For that purpose, AERO employs MinIO, a free and open-source S3-compatible
object store:

$ minio --version
minio version RELEASE.2023-09-20T22-49-55Z (commit-
id=9788d85ea3a99eeed8073a57a21ccee71035f152)
Runtime: go1.21.1 linux/amd64
License: GNU AGPLv3 <https://www.gnu.org/licenses/agpl-3.0.html>
Copyright: 2015-2023 MinIO, Inc.

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 30

Figure 11. cnn_serving Function YAML file

Figure 12. Successful invocation of the image_processing Function

Once Functions have been deployed, they are exposed by Knative through a dedicated URL. This is
an HTTP/1.1 endpoint served by gunicorn, which expects Functions’ input data serialized into JSON.
To streamline the testing process, we have develop a command line HTTP client for AERO
FunctionBench Functions, which is distributed through the associated code repository along with
Functions’ code, at https://github.com/AERO-Project-EU/aerofb/blob/main/tools/quicktest_client.py.
The client reports information about attempted invocation requests (such as the target URL and the
serialized input), as well as the target server’s response and timing information, as illustrated in Figure
12, which shows the successful invocation of the image_processing Function.

Similarly, to deploy the AERO FunctionBench Function on the AERO research FaaS stack a
configuration YAML file needs to be created. The following commands create the appropriate
configuration for deploying the video_processing Function.

https://github.com/AERO-Project-EU/aerofb/blob/main/tools/quicktest_client.py

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 31

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 namespace: default
spec:
 template:
 spec:
 containers:
 - image: ghcr.io/aero-project-eu/aerofb-
video_processing:0.0.1@sha256:d0ce8ae3185c745954a81ac293fce5d5a3c0c9d418cddf5cb8e14bfaa
e72afd8
 ports:
 - name: h2c # For GRPC support
 containerPort: 8000
 env:
 - name: GUEST_ADDR
 value: "127.0.0.1"
 - name: GUEST_PORT
 value: "8000"
 - name: GUEST_IMAGE
 value: "ghcr.io/aero-project-eu/aerofb-
video_processing:0.0.1@sha256:d0ce8ae3185c745954a81ac293fce5d5a3c0c9d418cddf5cb8e14bfaa

e72afd8"

Next, to create the Knative service the following command needs to be executed:

$ kn service apply video-processing –filename ./video-processing.yaml

At the time of writing, a networking problem in vHive limits us to executing only a single function at
a time. More specifically, the TUN/TAP devices for the microVMs are not properly set up and when
two microVMs execute at the same time, one of them returns an error that the TAP device is in use.
We are actively investigating the issue in order to solve it and enable running multiple functions in
parallel.

4.4.2 FaaSRail

The first step in using FaaSRail is to run the ShrinkRay component. ShrinkRay receives input related
to the configuration of the experiment, produces the experiment specification and formats it as an
output CSV file. For instance:

$ shrinkray/main.py -w artifacts/icy2-20231011-5.10.189__20231014175133.json \
> -o azure_spec_rps20_min30.csv trace --trace-dir artifacts/azure-trace \
> --request-rate 20 --target-duration 30 spec

The experiment specification produced by ShrinkRay can then be used as input to FaaSRail’s Load
Generator. As an example, to run the generator’s HTTP-based plugin against a deployed FaaS stack,
one can issue the following:

$ RUST_LOG='rgv3=debug,reqgen_common=debug,snaplace=info,snaplace_grpc=info' \
> numactl -N1 -l target/release/rgv3-faascell \
> --source-address '147.102.4.82:60051' --sink-address '147.102.4.82:60052' \
> --minio-address 'icy1.cslab.ece.ntua.gr:59000' -o /tmp/tmpfs/sink.json \
> --inv-log /tmp/tmpfs/inv_log.json --invoc-id 0 \
> --csv artifacts/azure__rps20__min30.csv --seed 0

The output on stderr provides details about the invocation requests issued for each Function, along
with their timestamp and input information.

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON
THE EU PROCESSOR V1.0 32

5 Summary

This report presented the artifacts developed in the first half of the AERO project, in the context of
WP5 “EU Cloud Services”. Due to the delays in the availability of the Rhea platform, some of the
planned work has been re-focused on alternative platforms. The software components that are
released as part of WP5 are available in the respective AERO repositories, which are provided as part
of the report. This document provides an overview of the software components and includes
instructions on how to build and run the artifacts.

