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DISCLAIMER 

AERO has received funding from European Union’s Horizon Europe research and innovation 
programme under Grant Agreement No 101092850. Views and opinions expressed are however 
those of the author(s) only and do not necessarily reflect those of the European Union or the granting 
authority. Neither the European Union nor the granting authority can be held responsible for them.  

This document contains material and information that is proprietary and confidential to the AERO 
consortium and may not be copied, reproduced or modified in whole or in part for any purpose without 
the prior written consent of the AERO consortium. 

Although the material and information contained in this document is considered to be precise and 
accurate, neither the Project Coordinator, nor any partner of the AERO Consortium nor any individual 
acting on behalf of any of the partners of the AERO Consortium make any warranty or representation 
whatsoever, express or implied, with respect to the use of the material, information, method or 
process disclosed in this document, including merchantability and fitness for a particular purpose or 
that such use does not infringe or interfere with privately owned rights.  

In addition, neither the Project Coordinator, nor any partner of the AERO Consortium nor any 
individual acting on behalf of any of the partners of the AERO Consortium shall be liable for any 
direct, indirect or consequential loss, damage, claim or expense arising out of or in connection with 
any information, material, advice, inaccuracy or omission contained in this document. 
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Executive Summary 

This report provides the documentation regarding the software artifacts developed for the AERO 
cloud services, during the 1st reporting period of the project (M18). We provide the respective 
repositories in which the software can be found, along with an overview of the components and 
instructions on how to build and run the artifacts. The provided software includes the MAESTRO 
cloud orchestrator, the Knot/Exaflow framework and the various components of the FaaS platform 
that will be deployed within the AERO project.  
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List of Abbreviations & Acronyms 

Abbreviation/Acronym Meaning 
CNI Container Network Interface 
CRD Custom Resource Definitions 
CRI Container Runtime Interface 
DNS Domain Name System 
FaaS Function-as-a-Service 
FPGA Field Programmable Gate Array 
GPU Graphics Processing Unit 
HTTPS Hypertext Transfer Protocol Secure 
JDK Java Development Kit 
JSON JavaScript Object Notation 
K8s Kubernetes 
OCI Open Container Initiative 
OS Operating System 
VM Virtual Machine 
VMM Virtual Machine Manager 
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1 Introduction 

Deliverable D5.1 presents the intermediate release of the AERO software artifacts that have been 
developed and optimsed until M18, under the scope of WP5. The objective of this WP is to bring up 
and optimse the services selected for cloud management, deployment, monitoring and orchestration 
in the context of the EU processor ecosystem.  

In this document, we describe the work that has been carried out during the reporting period, and 
present how potential users can reproduce the submitted artifacts for the tested hardware platforms. 

This deliverable is structured in three main sections (Sections 2-4). In particular: 

● Section 2 “Cloud Containerization and Orchestration” focuses on the MAESTRO cloud 
orchestration framework, which relies on Kubernetes to deploy containerized applications. 

● Section 3 “Acceleration-aware Cloud Scheduling and Deployment Frameworks” focuses on 
the ExaFlow/Knot frameworks. ExaFlow is used to accelerate complex cloud-based 
workflows and is based on Knot, a Kubernetes frontend with a focus on facilitating data 
science activities. 

● Section 4 “Lightweight VMs & Emerging Serverless Frameworks”, which focuses on the 
deployment and optimisation of a Function-as-a-Service (FaaS) platform. 

Each main section is also divided into several subsections that: 

● Present an overview of the software components 
● Document the hardware and software specifications of the tested software 
● Provide instructions on how to build the software 
● Provide the necessary steps to run the software 

 

.   
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2 Cloud Containerization and Orchestration 

2.1 Overview 

With respect to the containerization and orchestration aspects of AERO, we focus heavily on 
Kubernetes 1(k8s), which acts as the de-facto orchestrator for containerized services. Our final goal is 
to bring up Kubernetes to the SIPEARL Rhea processor and demonstrate it in the context of the EU 
processor ecosystem. Kubernetes can use different container runtimes (e.g., containerd, cri-o), as long 
as the runtime is compatible with the Container Runtime Interface (CRI) API specification2.  

Service provisioning and resource management on top of Kubernetes clusters is performed using 
UBITECH’s Maestro3 framework. Maestro comprises several components: a GUI, a resource 
management service, a deployment management service, a k8s-connector, a backend service, an 
Apache Kafka4 and a MariaDB5 database. It should be noted that the Maestro components are 
typically not deployed in the same servers as the Kubernetes cluster. Instead, they can be deployed 
anywhere since MAESTRO leverages the Kubernetes API to communicate with clusters and manage 
the deployments. 

Within the AERO project, we are extending MAESTRO’s capabilities in the following directions: 

● adding the ability to utilize a wider range of devices contained in the EU processor ecosystem 
including hardware accelerators; 

● extending its current application model to include any other additional application and device 
constraints; 

● enabling it to deploy applications that use serverless components (functions) beside 
microservices, and 

● adding the capability to use lightweight VMs to deploy serverless workloads.  

In the 1st reporting period, we have successfully managed to:  

i) Extend MAESTRO’s application model to allow for GPU support and specification of 
hardware architecture constraints for the deployed cloud services.  

ii) Deploy and manage containerized services in ARM and RISC-V devices, using MAESTRO. 
iii) Allow for serverless application deployments, by integrating MAESTRO with Knative. 

In this deliverable, we document the 1st release of the MAESTRO software that provides the 
aforementioned features. In this respect, we focus on the extensions that were developed to support 
serverless applications. The required adaptations and testing of the software component are 
thoroughly detailed in D6.2. 

 
1 https://kubernetes.io/  
2 https://kubernetes.io/docs/concepts/architecture/cri/  
3 https://themaestro.ubitech.eu/  
4 https://kafka.apache.org/  
5 https://mariadb.org/  

https://kubernetes.io/
https://kubernetes.io/docs/concepts/architecture/cri/
https://themaestro.ubitech.eu/
https://kafka.apache.org/
https://mariadb.org/
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To deploy and manage containerized services in ARM and RISC-V devices, we enhanced MAESTRO’s 
application model the following ways: 

When defining a component in MAESTRO, we provide the option to specify the corresponding CPU 
architecture according to the target deployment device. This enhancement expands beyond the initial 
support for x86 and amd64 architectures, adding compatibility for ARM64 and RISC-V devices. 
Consequently, during deployment, the MAESTRO orchestrator is able to fetch the appropriate 
architecture version of the Docker6 image. 

Additionally, we have introduced a new feature that allows the user to configure service placement 
prior to deployment using Kubernetes cluster labels. These labels determine the characteristics, such 
as the architecture of the device, the operating system, the hostname, on which the deployment will 
occur. The labels are defined in the Kubernetes cluster and retrieved by MAESTRO. This enables the 
user to specify the target architecture, host, operating system, or any other criteria that differentiate 
the deployment environment. 

We also enhanced MAESTRO so that a user is able to use GPUs for hardware acceleration. 
Specifically, we allow users to define if they want their component to be GPU-Enabled or not. When 
enabling GPU option, the Kubernetes deployment specifications are extended appropriately to 
request GPU resources to run this service. 

Moreover, we enhanced MAESTRO’s orchestration features for serverless workloads. To achieve this, 
we rely on Knative7. Knative is an open-source platform that extends Kubernetes to manage 
serverless workloads, providing a powerful framework for building, deploying, and managing modern 
applications. It simplifies the development of container-based applications by automating many of 
the complexities associated with scaling, routing, and event-driven processing. The core architecture 
of Knative comprises two broad components, Serving8, and Eventing9 that run over an underlying 
Kubernetes infrastructure. Knative Serving10 allows us to deploy containers that can scale 
automatically as required. It builds on top of Kubernetes and a Network Layer by deploying a set of 
objects as Custom Resource Definitions11 (CRDs). Knative Eventing12 works with custom resources 
like Source, Broker, Trigger, and Sink. Source is the component that emits events to the Broker. The 
Broker acts as the hub for the events. These events can then be filtered based on any attribute using 
a Trigger, and subsequently routed to a Sink13.  

The Knative integration signifies a major upgrade in MAESTRO orchestration capabilities, enabling 
users to deploy, manage, and scale serverless applications seamlessly. The integration of MAESTRO 

 
6 https://www.docker.com/  
7 https://knative.dev/  
8 https://knative.dev/docs/serving/  
9 https://knative.dev/docs/eventing/  
10 https://knative.dev/docs/serving/architecture/  
11 https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/  
12 https://knative.dev/docs/eventing/  
13 https://knative.dev/blog/articles/get-started-knative-eventing/  

https://www.docker.com/
https://knative.dev/
https://knative.dev/docs/serving/
https://knative.dev/docs/eventing/
https://knative.dev/docs/serving/architecture/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://knative.dev/docs/eventing/
https://knative.dev/blog/articles/get-started-knative-eventing/
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with Knative is accomplished by utilizing the dedicated knative-client14 library for Java Spring 
framework.  

The addition of Knative support in MAESTRO brings several key advantages. Firstly, it offers event-
driven autoscaling, which dynamically adjusts the number of active instances based on real-time 
demand, thus optimising resource utilization and cost efficiency. Additionally, it enhances the agility 
and flexibility of application deployment, as users can now deploy services directly within the 
MAESTRO environment. Finally, this integration provides a unified platform for managing both 
traditional and serverless applications, enabling a cohesive and streamlined operational workflow. 
Overall, the integration with Knative empowers our users to harness the full potential of serverless 
architecture while leveraging MAESTRO's comprehensive orchestration capabilities.  

MAESTRO is currently a closed-source project. The implementation of the application model that 
supports GPU, ARM and RISC-V hardware is part of the closed-source code. However, it is in our 
plans to open-source it by the end of the project. Moreover, we have released the new Knative 
Controller service (which provides the integration of MAESTRO with Knative) as an open-source 
project under an Apache 2.0 license. The project development resources can be found in the AERO 
Github repository under https://github.com/AERO-Project-EU/maestro-serverless-controller. 

2.2 Hardware & Software Specification of Tested Platforms 

2.2.1 Hardware Specifications 

Table 1. Hardware specifications of tested platform for MAESTRO 

Hardware Specifications 
Ampere Altra Mt Jade 2U Server ARM Neoverse N1 (160 cores), 512GB RAM 
4x StarFive VisionFive 2 SBC RISC-V JH7110 SoC (4+2 cores), 8GB RAM 

2.2.2 Software Specifications 

To leverage MAESTRO's capabilities for deploying serverless Knative services, we have developed a 
dedicated Knative Controller. For its development we have used the Quarkus15 framework, which is 
being optimised by RHAT for deployment on ARM servers in the context of AERO. The controller 
itself is a microservice that serves as a REST client to communicate with the MAESTRO deployment 
controller. Therefore, all the requests for Knative deployments first come through this Quarkus-based 
controller, which invokes the MAESTRO deployment controller, and then the results are forwarded 
back to the Quarkus microservice, and reach again the end-user. The Knative Controller is built with 
Java 17 and Quarkus 3.12.0, featuring a Swagger16 documentation page where the controller 
endpoints are documented using the OpenAPI17 Specification 3.1.0. The project's README.md file 
includes detailed instructions on how to build and run the controller as a .jar file, a binary, or a 
containerized image using Docker. 

 
14 https://mvnrepository.com/artifact/io.fabric8/knative-client  
15 https://quarkus.io/  
16 https://swagger.io/    
17 https://spec.openapis.org/oas/v3.1.0  

https://github.com/AERO-Project-EU/maestro-serverless-controller
https://mvnrepository.com/artifact/io.fabric8/knative-client
https://quarkus.io/
https://swagger.io/
https://spec.openapis.org/oas/v3.1.0
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Table 2. Software specifications of tested platform for MAESTRO 

Software Specifications 
JDK  1.8.0_301 
Spring Boot 2.0.1 
Maven  3.8.6 
Docker  26.1.4 
Docker compose 2.27 
Kubernetes 1.28.0 
Knative 1.14.1 
OS Ubuntu 20.04 LTS 

Table 3. Software specifications of tested platform for Knative Controller 

Software Specifications 
JDK 17 
Quarkus 3.12.0 
Maven 3.9.6 
Docker 26.1.4 
Docker compose 2.27 
Kubernetes 1.28.0 
Knative 1.14.1 
OS Ubuntu 20.04 LTS 

2.3 How to build the technology? 

In order to build and run MAESTRO, users can follow these steps: 

Prerequisites: 

●  JDK 1.8.0_latest 
●  Maven 3.x 
●  Docker 18.03 or higher 
●  Docker Compose 1.18 or higher 

Before moving on, users should verify that they have the required JDK and Maven version using the 
following shell commands: 

$ mvn -version  
$ java -version 
$ javac -version 
$ docker --version 
$ docker-compose --version (or docker compose version) 

Clone the repo: 

Fetch the repository using: git clone git@gitlab.ubitech.eu:cs3/rnd/aero/aero-maestro.git 

Change permissions: 

Grafana folder AND subfolders used as volume needs to change its permission from 715 to 717 
before spawning the framework: 

mailto:git@gitlab.ubitech.eu:cs3/rnd/aero/aero-maestro.git


 

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON 
THE EU PROCESSOR V1.0   13 

$ sudo mkdir -p /data/maestro/grafana/data 
$ sudo mkdir -p /data/maestro/grafana/logs 
$ sudo chmod 717 /data/maestro/grafana/data 
$ sudo chmod 717 /data/maestro/grafana/logs 

In order to build the microservices and run the project user must: 

1. Move to project home folder: 

$ cd aero-maestro (project home folder) 

2. Copy external dependencies in maven folder: 

$ cp /aero-maestro/ext-deps/maven-libraries/settings.xml pathToMavenFolder/./m2 

3. Build project microservices: 

$ mvn clean install 

4. Build containerized services: 

$ cd aero-maestro/framework/development/aero 
$ docker-compose -f docker-compose-build.yml build 

5. Create an .env file as in the .env.example and set variables accordingly: 

$ mv .env.example .env 
$ vi .env 

6. Run containerized services 

$ docker compose up -d 

When the docker services are ready, the user can use the frontend UI at http://serverIP:3000, where 
‘serverIP’ is the one you set in the ‘.env’. 

Note that, this docker compose file also includes the knative controller docker service for ease of use. 

Steps for building and running the Knative Controller 

In order to build and run the Knative Controller, the user can follow these steps: 

1. Packaging and running the application: 

The application can be packaged using: 

$ ./mvnw package 

It produces the ‘quarkus-run.jar’ file in the ‘target/quarkus-app/’ directory. Be aware that it’s not an 
über-jar as the dependencies are copied into the ‘target/quarkus-app/lib/’ directory. The application 
is now runnable using: 
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$ java -jar target/quarkus-app/quarkus-run.jar 

To build an über-jar, execute the following command: 

$ ./mvnw package -Dquarkus.package.type=uber-jar 

The application, packaged as an über-jar, is now runnable using: 

$ java -jar target/*-runner.jar 

The user can create a native executable using: 

$ ./mvnw package -Pnative 

Or, if GraalVM is not installed, the user can run the native executable build in a container using: 

$ ./mvnw package -Pnative -Dquarkus.native.container-build=true 

The user can then execute the native executable with: 

$ ./target/knative-serverless-controller-{version}-runner 

Then user users can directly use the available containerized version:  

There are two docker-compose files: 

- docker-compose.yml which will use the dev profile properties of the project 

- docker-compose.prod.yml which can be used along with .env file (as the one in the .env.example) 
to set specifically the parameters of the project. 

Then run: 

$ docker compose up -d 

2.4 How to run? 

In this Section, we provide some information on how a MAESTRO user can leverage the new 
functionalities implemented in the context of the AERO project. i.e.: i) GPU Hardware acceleration,  
ii) deployments on ARM and RISC-V hardware and iii) deployment of serverless functions 

In order to declare that a service should be run on a GPU, we have to enable the “GPU-Enabled” 
option for this component through the Components menu and editing the corresponding component. 
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Figure 1. Request GPU placement resources 

To select the desired component architecture, you can navigate to the Components menu and select 
the architecture for the corresponding component: 
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Figure 2. Set component CPU architecture 

When configuring the deployment, the user can press on the component symbol and open the 
configuration menu. From there, the user can navigate to the Node Labels Affinity tab and select the 
desired node labels for the corresponding component.  

 

Figure 3. Select Kubernetes node labels for the component deployment 

 

To deploy a serverless application, user can navigate to the MAESTRO-UI, default listening on port 
3000. Select an Application to deploy. 
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Figure 4. MAESTRO Application view 

 

Then user set the application name and the provider to the Knative Provider and proceed to 
deployment. 

 
Figure 5. MAESTRO Application Instance configuration before deployment 

The procedure has now started and a dedicated namespace has been created in the Kubernetes 
Cluster. All the resources can be seen under that namespace. When the service deployment is no 
longer needed, a user can click “Un-deploy” to clear all the resources. 
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3 Acceleration-aware Cloud Scheduling and Deployment 
Frameworks (FORTH) 

3.1 Overview 

This task focuses on exploiting the ExaFlow framework to accelerate complex cloud-based 
workflows on the EU processor/cloud ecosystem. ExaFlow is based on Knot, a Kubernetes frontend, 
with a focus on facilitating data science activities. It supplies a web-based landing page for working 
on a Kubernetes cluster, allowing users to launch services from customizable templates, manage their 
container images, and launch notebooks for writing portable code. Behind the scenes, Knot manages 
user accounts, wires up relevant storage to the appropriate paths inside running containers, securely 
provisions multiple services under a single externally-accessible HTTPS endpoint, while keeping 
isolated, per-user namespaces at the Kubernetes level, and provides identity services for OAuth 
2.0/OIDC-compatible applications. The Knot installation includes JupyterHub18, Argo Workflows19, 
Harbor20, and Grafana21, all accessible through the dashboard, taking advantage of the single sign-
on feature. ExaFlow extends Knot with support for hardware architectures based on the ARM 
instruction set (like Rhea), custom services for the AERO project and specialized Kubernetes plug-ins 
for managing accelerators. 

Knot is available at https://github.com/AERO-Project-EU/knot, under an Apache-2.0 open-source 
license. 

3.2 Hardware & Software Specification of Tested Platforms 

3.2.1 Hardware Specifications 

ExaFlow/Knot has been tested in the following ARM-based hardware.  

Table 4. Hardware specifications of tested platorm for ExaFlow/Knot 

Hardware Specifications 
Ampere Altra NeoverseN1 (160 cores), 256 GB RAM 
MacBook Pro M1 (2020) Apple M1 (4+4 cores), 16 GB RAM 

QEMU 
QEMU 7.2 ARM VM (AArch64) running on MacBook Pro M1 (2020) 
macOS 13.6.7 (4 CPUs/8 GB RAM) 

Raspberry Pi 4 ARM Cortex-A72 (4 cores), 8 GB RAM 
 

We also plan to test on AWS Graviton instances, as well as NVIDIA Grace. 

 
18 https://jupyter.org/hub  
19 https://argoproj.github.io/workflows/  
20 https://goharbor.io/  
21 https://grafana.com/  

https://github.com/AERO-Project-EU/knot
https://jupyter.org/hub
https://argoproj.github.io/workflows/
https://goharbor.io/
https://grafana.com/
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3.2.2 Software Specifications 

ExaFlow/Knot requires a working Kubernetes installation and optionally CUDA22 for NVIDIA GPU 
support. 

Table 5. Software specifications of tested platform for ExaFlow/Knot 

Software Specifications 
Kubernetes version >= 1.27.x 
CUDA (optional) version >= 10.2 

3.3 How to build the technology? 

We provide a comprehensive Makefile to expose all available build actions via simple commands. 

To build the Knot container image locally, run: 

$ make container 

To test the container in a local Kubernetes environment, run: 

$ make test-sync 

Then point a browser to https://<your IP address>.nip.io and login. 

To tear down the test environment: 

$ make test-destroy 

To build and push the container image, run: 

$ make container-push 

To change the version, edit VERSION. Other variables, like the kubectl version and the container 
registry name are set in the Makefile. For example, the environment variable REGISTRY_NAME points 
to the Docker namespace that will host the container image (username). 

To build and push the container image in the AERO namespace (for example), run: 

$ REGISTRY_NAME=aero make container-push 

The Makefile uses buildx to build the Knot container for multiple architectures (linux/amd64 and 
linux/arm64). Also, a GitHub action automatically builds and releases a new image when a new 
version tag is pushed. This also triggers publishing the corresponding Knot dashboard Helm chart. 

3.4 How to run? 

To deploy Knot in a server, users need a typical Kubernetes installation, Helm23, the Helm diff plugin, 
and Helmfile installed. 

Apply the the latest Knot helmfile.yaml with: 

 

 
22 https://developer.nvidia.com/cuda-toolkit  
23 https://helm.sh/  

https://developer.nvidia.com/cuda-toolkit
https://helm.sh/
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$ export KNOT_HOST=example.com 

$ helmfile -f git::https://github.com/AERO-Project-EU/knot.git@helmfile.yaml sync 

The variable KNOT_HOST is necessary. By default, we use cert-manager to self-sign a wildcard 
certificate for the given host. Users need to make sure that at the DNS level, both the domain name 
and its wildcard point to their server (i.e., both example.com and *.example.com). If the user already 
knows their external IP address, they can use a nip.io name (i.e., set KNOT_HOST to <user IP 
address>.nip.io). 

If there already is a certificate, it should be placed in a secret in the ingress-nginx namespace with: 

$ kubectl create namespace ingress-nginx 

$ kubectl create secret tls -n ingress-nginx ssl-certificate --key <key file> --cert <crt 
file> 

And then skip the self-signing process at installation by specifying --state-values-set 
ingress.createSelfsignedCertificate="false" to helmfile, as follows: 

$ export KNOT_HOST=example.com 

$ helmfile -f git::https://github.com/AERO-Project-EU/knot.git@helmfile.yaml --state-
values-set ingress.createSelfsignedCertificate="false" sync 

 

  



 

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON 
THE EU PROCESSOR V1.0   21 

4 Lightweight VMs & Emerging Serverless Frameworks 
(ICCS) 

4.1 Overview 

In the context of AERO, ICCS will deploy and optimise a Function-as-a-Service (FaaS) platform on 
the upcoming Rhea processor. However, as Rhea is not available yet, this deliverable entails the 
results of the development on similar processors, namely Ampere Altra Max (ARM Neoverse N1 
cores) and NVIDIA’s GraceHopper (ARM Neoverse V2 cores). 

As defined in deliverable D6.1, the FaaS platform comprises several software components. This 
deliverable provides contributions on the following levels: 

➢ FaaS software stack: The majority of the software components are leveraged as distributed by 
their corresponding open-source projects. This deliverable provides the necessary patches and 
configurations to allow deployment on the selected hardware platforms. 

➢ Serverless workloads: To be able to exercise and demonstrate the FaaS platform, ICCS has 
ported FunctionBench24, one of the first publicly available realistic FaaS workload suites. 

➢ Serverless load generator: The serverless ecosystem currently lacks a unified evaluation 
methodology based on realistic, production-level FaaS workloads. ICCS has developed 
FaaSRail, a load generator that attempts to fill this gap by combining open source, real-world 
FaaS workloads with public traces of commercial FaaS platforms to generate representative 
series of requests suitable for evaluating serverless prototypes. 

All these contributions are released as open source (licensed under Apache 2.0.) and are available in 
the AERO GitHub repository space at the following links: 

➢ FaaS software stack patches: https://github.com/AERO-Project-EU/faas_stack  
➢ Serverless workloads: https://github.com/AERO-Project-EU/aerofb  
➢ Serverless load generator: https://github.com/AERO-Project-EU/faasrail  

4.2 Hardware & Software Specification of Tested Platforms 

The contributed components have been developed and deployed on two alternative ARM-based 
platforms, an Ampere Altra server and an NVIDIA GraceHopper system, which have 160 ARMv64 
Neoverse N1 cores and 72 ARMv64 Neoverse V2 cores, respectively. 

4.2.1 Hardware Specifications 

The hardware characteristics of the tested platform are described in Table 6. Hardware specifications 
of tested platform for the FaaS platform.  

 

 
24 https://github.com/ddps-lab/serverless-faas-workbench  

https://github.com/AERO-Project-EU/faas_stack
https://github.com/AERO-Project-EU/aerofb
https://github.com/AERO-Project-EU/faasrail
https://github.com/ddps-lab/serverless-faas-workbench
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Table 6. Hardware specifications of tested platform for the FaaS platform 

Hardware Specifications 
System Ampere Altra Mt Jade   NVIDIA GraceHopper  

CPU 2x Ampere Altra (Q80-30),  
160x ARMv8.2-A Neoverse N1 Cores 

72x ARMv64 Neoverse V2 

RAM 4x 64GiB Samsung DDR4-3200  576GB (480GB ECC LPDDR5X, 96GB 
HBM3) 

Disk Samsung 1TB M.2 PCIe 3.0 x4 NVMe SSD Intel 1.92TB E1.S PCIe 4.0 x4 NVMe SSD 

4.2.2 Software Specifications 

Software requirements for this task can be classified as either components of the FaaS stack to be 
deployed, or utilities that are put into use only for building some of the former. 

Note that any dependencies of stack components are extensively documented in their corresponding 
upstream installation documentation/guides, and hereby omitted. Similarly, Python package 
dependencies of AERO’s FunctionBench port are listed along with their exact revision tag at the 
organization’s code repository in the requirements.yml file, while FaaSRail’s Rust crates can be 
found at the associated Cargo.toml file. 

Table 7. Software specifications for the FaaS platform 

Software Specifications 
Deployed FaaS Stack Components 

OS kernel Linux 5.10.* / 5.15.* / 6.6.* 
OCI runtimes runc: 1.0.0~rc93+ds1 / 1.1.12; against spec 1.0.2-dev 
 kata-static 3.3.0 
Container Manager / CRI containerd 1.7.* 
Orchestrator Kubernetes 1.29.* or 1.30.* 
CNI kube-flannel 1.24.* 
FaaS Platform Knative 1.13.* with Kourier 1.13.* or 1.14.* 
VMM Firecracker 1.6.0 (+ICCS’s patch for Neoverse V2) 

Development-only Utilities 
Local Container Platform Docker 26.* 
Python VM CPython 3.12.* 
Rust >= 1.79.0 
MinIO Server >= RELEASE.2023-09-20T22-49-55Z 

4.3 How to build the technology? 

4.3.1 State-of-Practice FaaS Stack 

To foster the wider adoption of its bleeding-edge FaaS stack, AERO strives to minimize invasive 
modifications of the modules in its stack. As a result of this effort, most software components can be 
deployed as distributed by their corresponding open-source projects, listed in Table 7 and 
documented in their respective code repositories, without building them from source. 

Nevertheless, upbringing the FaaS stack for AArch64 architectures still necessitates certain 
modifications. In the scope of this deliverable, these modifications entail only a single code patch to 
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Firecracker VMM’s source tree, which can be applied in a single command. The patch file itself can be 
found in the AERO organization’s code repository at https://github.com/AERO-Project-
EU/faas_stack/blob/main/firecracker-patches/fc_v1.6.0-aero.patch. To clone the Firecracker git, 
download ICCS’ patch and apply it, the following commands need to be executed: 

$ git clone --depth 1 --branch v1.6.0 \ 

> https://github.com/firecracker-microvm/firecracker.git 

$ cd firecracker 

$ wget https://raw.githubusercontent.com/AERO-Project-EU/faas_stack/main/firecracker-
patches/fc_v1.6.0-aero.patch 

$ git apply fc_v1.6.0-aero.patch 

To subsequently build the patched firecracker binary from the same working directory (i.e., the root 
of the Firecracker source tree), run: 

$ tools/devtool build --release 

The resulting compiled and statically-linked binary can then be found, among others, under 
build/cargo_target/aarch64-unknown-linux-musl/release/, and can be used to replace the 
original firecracker binary distributed with kata-static. The patching procedure is identical in the 
case of vHive’s Firecracker fork, currently used as AERO’s research FaaS stack and discussed in 
Section 4.3.2. 

AERO uses the stock kata-static distribution, provided by the open-source Kata Containers project 
itself. Kata is deployed according to the official documentation, using Firecracker as the VMM 
(“hypervisor” in terms of Kata Containers’ documentation). AERO employs containerd as its FaaS 
stack’s high-level node-local container manager. To provide Firecracker VMs with container root 
filesystems, containerd has to be configured with a working device-mapper snapshotter, which takes 
advantage of host kernel’s dm-thinpool and dm-snapshot mechanisms to expose these rootfs in the 
form of block devices. Furthermore, containerd has to be configured with Firecracker-based Kata 
Containers as one of its available underlying OCI runtimes. 

Apart from being the integration point of Kata Containers to the FaaS stack, containerd also acts as 
the CRI implementation of AERO’s orchestrating component (i.e., any Kubernetes distribution, or any 
Kubernetes API-compatible alternative). In the scope of this deliverable, AERO deploys a standard 
(vanilla) Kubernetes cluster using kube-flannel as its CNI plugin, according to the official 
documentation. Moreover, to expose Kata Containers as an OCI runtime option for Kubernetes, we 
define a new Kubernetes RuntimeClass, which is shown in Figure 6. 

Subsequently, AERO deploys Knative on top of Kubernetes, by following the standard installation 
instructions provided by the upstream project documentation. We use Knative’s purpose-built 
networking layer implementation, Kourier. Furthermore, we configure Knative’s control plane to 
employ sslip.io for setting up Functions’ DNS, to make them easily reachable from both inside and 
outside the Kubernetes cluster. Finally, we set up Knative’s associated extension flag to allow 
specifying the desired underlying Kubernetes RuntimeClass on a per Knative Service basis, as 
described in the official project’s documentation. 

 

https://github.com/AERO-Project-EU/faas_stack/blob/main/firecracker-patches/fc_v1.6.0-aero.patch
https://github.com/AERO-Project-EU/faas_stack/blob/main/firecracker-patches/fc_v1.6.0-aero.patch
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Figure 6. The Kubernetes RuntimeClass that exposes Kata Containers as an OCI runtime option 

 
Figure 7. Created Kubernetes API Objects and Pods 

When everything is configured, several Kubernetes API Objects should be created, and a number of 
Pods (mostly related to the various control planes in question) should be deployed to the cluster, as 
depicted in Figure 7. Details about these configurations can be found in the code repository, along 
with the configuration files themselves.  

4.3.2 Research FaaS stack 

As discussed in Deliverable D6.1, we intend to use a vHive-based research stack to showcase 
snapshot-based optimisations. The source code and setup script files distributed by vHive25 can be 
used to setup a FaaS stack with Knative on top of Kubernetes that uses not only containerd, but also 
firecracker-containerd26, thus enabling the use of Firecracker, a VMM that supports VM snapshotting. 

At the time of writing, the provided scripts support the AArch64 architecture only for the stock-only 
setup, i.e., the setup that uses containerd and not firecrackaer-containerd. Hence, we elaborate below 
on the steps required to setup vHive with firecracker-containerd on AArch64 systems. More 
specifically, we setup vHive on the NVIDIA GraceHopper platform listed in Table 6. 

Starting with a vanilla Ubuntu 22.04 with Linux kernel v.6.5.0-1022-nvidia-64k, we mainly follow 
the steps provided in the quickstart guide27 in the vHive repository. 

 
25 https://github.com/vhive-serverless/vHive  
26  https://github.com/vhive-serverless/firecracker-containerd 
27 https://github.com/vhive-serverless/vHive/blob/main/docs/quickstart_guide.md 

https://github.com/vhive-serverless/vHive
https://github.com/vhive-serverless/firecracker-containerd
https://github.com/vhive-serverless/vHive/blob/main/docs/quickstart_guide.md
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$ git clone https://github.com/vhive-serverless/vHive.git  

$ cd vHive 

First, we build the setup tool and run the setup_node command: 

$ pushd scripts && go build –o setup_tool && popd 

$ cd scripts 

$ ./setup_tool setup_node firecracker 

This script performs the basic setup of our node, i.e., installs the required pacakges and binaries, 
setups basic networking, etc. Unfortunately, the firecracker and firecracker-containerd binaries are 
only provided for x86_64 systems, and therefore they need to be built from sourse fo AArch64 
systems. 

$ git clone https://github.com/vhive-serverless/firecracker-containerd 

$ cd firecracker-containerd 

$ make all-in-docker 

$ cp ./runtime/containerd-shim-aws-firecracker ./firecracker-
control/cmd/containerd/firecracker-containerd ./firecracker-
control/cmd/containerd/firecracker-ctr /usr/local/bin/ 

$ git submodule update --init --recursive _submodules/firecracker 

$ cd _submodules/firecracker 

$ git checkout tags/v1.4.1 

At this point we need to apply the patch for Firecracker on AArch64 systems, as described in Section 
4.3.1. Once this is done, we can proceed with building Firecracker and the rest of the setup. 

$ cd ../../ 

$ make firecracker (an error may occur here but we can ignore it) 

$ cp _submodules/firecracker/build/cargo_target/aarch64-unknown-linux-
musl/release/firecracker _submodules/firecracker/build/cargo_target/aarch64-unknown-
linux-musl/release/jailer /usr/local/bin/ 

$ cat << EOF > /etc/containerd/config.toml 

version = 2 

[plugins] 

  [plugins."io.containerd.grpc.v1.cri"] 

    [plugins."io.containerd.grpc.v1.cri".cni] 

      bin_dir = "/usr/lib/cni" 

      conf_dir = "/etc/cni/net.d" 

  [plugins."io.containerd.internal.v1.opt"] 

    path = "/var/lib/containerd/opt" 

  [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc] 

    runtime_type = "io.containerd.runc.v2" 

    [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options] 

EOF 

 

https://github.com/vhive-serverless/vHive.git
https://github.com/vhive-serverless/firecracker-containerd
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At this point we need to build the rootfs image and the kernel that will run inside the Firecracker 
microVM: 

$ cd firecracker-containerd 

$ make image 

$ cp tools/image-builder/rootfs.img /var/lib/firecracker-containerd/runtime/default-
rootfs-aarch64.img 

$ cd _submodules/firecracker 

$ cp ../../kernel-configs/microvm-kernel-aarch64-5.10.config . 

$ ./tools/devtool -y build_kernel --config ./microvm-kernel-aarch64-5.10.config 

$ cd ../../ 

$ cp _submodules/firecracker/build/kernel/linux-5.10/vmlinux-5.10-aarch64.bin 
/var/lib/firecracker-containerd/runtime/ 

We then need to create the directory for the CNI K8s plugin: 

$ mkdir /usr/lib/cni 

$ cp /opt/cni/bin/* /usr/lib/cni/ 

Next, we setup and configure containerd’s device mapper snapshotter, which is used to create block 
devices for the microVMs: 

$ cd vHive/scripts 

$ ./setup_tool create_devmapper 

At this point, we can start containerd, firecracker-containerd and the vHive daemon: 

$ containerd &> containerd.log & 

$ firecracker-containerd –config /etc/firecracker-containerd/config.toml &> firecracker-
containerd.log & 

$ cd vHive 

$ go build 

$ ./vhive &> vhive.log & 

As all daemons are now running successfully, we can create our cluster, e.g., a single node cluster: 

$ cd vHive/scripts 

$ ./setup_tool create_one_node_cluster 

At this point, as shown in Figure 8, the K8s pods are up and running: 

$ export KUBECONFIG=/etc/kubernetes/admin.conf 

$ kubectl get pods -A 
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Figure 8. Kubernetes pods running for the research FaaS stack 

4.3.3 AERO FunctionBench 

Functions in the popular FunctionBench FaaS benchmarking suite are originally written in Python. 
Python is an interpreted language; therefore, the Functions do not need to be built. However, to 
efficiently distribute them and to use them in a complex FaaS stack, they need to be packaged into an 
OCI (or Docker) image. To do so, AERO provides a set of Dockerfiles and Makefiles that automate this 
procedure. To fetch the source code, one may issue: 

$ git clone https://github.com/AERO-Project-EU/aerofb.git 

First, since all Function images use a common base, we need to package their base images. To do 
that, from the root of AERO FunctionBench source tree, we can issue: 

$ make base-images 

After creating the OCI images, we can proceed to packaging all AERO FunctionBench Functions, by 
issuing the following in the same working directory as previously: 

$ make OWNER=AERO-Project-EU 

By the time this step finishes, all OCI images have been built, and they are locally stored by Docker 
daemon. However, this may not suffice; to ease their distribution and make them easily reachable, we 
can push each created image to an OCI image registry (e.g., Docker Hub, GitHub Container Registry, 
etc). To do that, we may issue: 

$ docker push ghcr.io/AERO-Project-EU/aerofb-<BENCHMARK_NAME>:0.0.1 

Note that most of these arguments are configurable through the top-level Makefile, so that the 
packaging procedure remains flexible enough for local development. 



 

AERO D5.1 – RESEARCH AND DEVELOPMENT (UPBRING AND OPTIMIZATION) OF AERO CLOUD SERVICES ON 
THE EU PROCESSOR V1.0   28 

4.3.4 FaaSRail 

While upbringing the serverless ecosystem, AERO identified that a unified evaluation methodology 
based on realistic, production-level FaaS workloads is currently missing. To this end, ICCS has 
developed FaaSRail, a load generator that attempts to fill this gap by combining open source, real-
world workloads from open-source FaaS benchmarking suites with public traces of commercial FaaS 
platforms to generate representative series of requests suitable for evaluating serverless prototypes. 

To fetch and build FaaSRail one can issue: 

$ git clone https://github.com/AERO-Project-EU/faasrail.gitmala 

$ cd faasrail/faasrail-loadgen 

$ cargo build --profile=release 

4.4 How to run? 

4.4.1 AERO FunctionBench on the FaaS stack 

The AERO FunctionBench Functions can be deployed, either as standalone containers, or as Knative 
Services on any Knative-compatible FaaS stack, such the AERO state-of-practice and research stacks. 

To be able to deploy FunctionBench Functions’ OCI images anywhere, we first have to make them 
available for distribution through an OCI image registry. AERO has selected to host these images in 
the GitHub Container Registry, along with the source code repository, built and pushed in a multi-
architecture setup via GitHub’s CI, GitHub Actions. All AERO FunctionBench hosted OCI images can 
be viewed at https://github.com/orgs/AERO-Project-EU/packages?repo_name=aerofb. 

To locally deploy a FunctionBench function in a standalone fashion, we can use Docker (or even plain 
containerd, using a command line client like nerdctl). For example, to deploy the video_processing 
Function, we can issue: 

$ docker run --rm -it ghcr.io/aero-project-eu/aerofb-video_processing:0.0.1 

An example output of this deployment (including the pulling of the OCI image from the GitHub 
Container Registry repository of AERO) is shown in Figure 9. Note that the command above deploys 
the Function in a plain container, using runc as its underlying OCI runtime. To deploy it using the kata-
fc OCI runtime, the runtime has to be specified as allowed by the command line client in use. For 
example, Figure 10 shows the equivalent to the above command, but this time using the Kata 
Containers over Firecracker VMM runtime, along with the respective output, which also proves the 
successful deployment in a microVM (e.g., notice the difference in Linux kernel versions in the output). 

To deploy AERO FunctionsBench Functions on a Knative-based FaaS stack, like AERO’s both state-
of-practice and research stacks, the Functions have to be represented as Knative Services. AERO 
distributes such Knative Service definitions for the Functions adopted from FunctionBench, in the form 
of YAML files that can be found in the associated code repository, at https://github.com/AERO-
Project-EU/aerofb/tree/main/tools/knative/svc.  

 

https://github.com/AERO-Project-EU/faasrail.git
https://github.com/orgs/AERO-Project-EU/packages?repo_name=aerofb
https://github.com/AERO-Project-EU/aerofb/tree/main/tools/knative/svc
https://github.com/AERO-Project-EU/aerofb/tree/main/tools/knative/svc
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Figure 9: Output of deploying the video_processing Function using runc 

 
Figure 10: Output of deploying the video_processing Function using the kata-fc OCI runtime 

An example of such a file is depicted in Figure 11. We observe that AERO provides two definitions 
for each Function: one that allows deployment over plain runc (using operating system-level 
virtualization; i.e., traditional containers), and another that allows deployment over the kata-fc 
RuntimeClass that was earlier defined in the Kubernetes cluster, after carefully setting up and 
configuring the Kata Containers project using Firecracker VMM as the hypervisor of choice. 

Note that, similar to FunctionBench, some of the AERO FunctionBench Functions attempt to 
download their input from an AWS S3-compatible object store through a URL provided in their 
invocation request. For that purpose, AERO employs MinIO, a free and open-source S3-compatible 
object store: 

$ minio --version 
minio version RELEASE.2023-09-20T22-49-55Z (commit-
id=9788d85ea3a99eeed8073a57a21ccee71035f152) 
Runtime: go1.21.1 linux/amd64 
License: GNU AGPLv3 <https://www.gnu.org/licenses/agpl-3.0.html> 
Copyright: 2015-2023 MinIO, Inc. 
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Figure 11. cnn_serving Function YAML file 

 

 
Figure 12. Successful invocation of the image_processing Function 

Once Functions have been deployed, they are exposed by Knative through a dedicated URL. This is 
an HTTP/1.1 endpoint served by gunicorn, which expects Functions’ input data serialized into JSON. 
To streamline the testing process, we have develop a command line HTTP client for AERO 
FunctionBench Functions, which is distributed through the associated code repository along with 
Functions’ code, at https://github.com/AERO-Project-EU/aerofb/blob/main/tools/quicktest_client.py. 
The client reports information about attempted invocation requests (such as the target URL and the 
serialized input), as well as the target server’s response and timing information, as illustrated in Figure 
12, which shows the successful invocation of the image_processing Function. 

Similarly, to deploy the AERO FunctionBench Function on the AERO research FaaS stack a 
configuration YAML file needs to be created. The following commands create the appropriate 
configuration for deploying the video_processing Function. 

https://github.com/AERO-Project-EU/aerofb/blob/main/tools/quicktest_client.py
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apiVersion: serving.knative.dev/v1 
kind: Service 
metadata: 
  namespace: default 
spec: 
  template: 
    spec: 
      containers: 
        - image: ghcr.io/aero-project-eu/aerofb-
video_processing:0.0.1@sha256:d0ce8ae3185c745954a81ac293fce5d5a3c0c9d418cddf5cb8e14bfaa
e72afd8 
          ports: 
            - name: h2c # For GRPC support 
              containerPort: 8000 
          env: 
            - name: GUEST_ADDR 
              value: "127.0.0.1" 
            - name: GUEST_PORT  
              value: "8000" 
            - name: GUEST_IMAGE  
              value: "ghcr.io/aero-project-eu/aerofb-
video_processing:0.0.1@sha256:d0ce8ae3185c745954a81ac293fce5d5a3c0c9d418cddf5cb8e14bfaa

e72afd8" 

Next, to create the Knative service the following command needs to be executed: 

$ kn service apply video-processing –filename ./video-processing.yaml 

At the time of writing, a networking problem in vHive limits us to executing only a single function at 
a time. More specifically, the TUN/TAP devices for the microVMs are not properly set up and when 
two microVMs execute at the same time, one of them returns an error that the TAP device is in use. 
We are actively investigating the issue in order to solve it and enable running multiple functions in 
parallel. 

4.4.2 FaaSRail  

The first step in using FaaSRail is to run the ShrinkRay component. ShrinkRay receives input related 
to the configuration of the experiment, produces the experiment specification and formats it as an 
output CSV file. For instance: 

$ shrinkray/main.py -w artifacts/icy2-20231011-5.10.189__20231014175133.json \ 
>         -o azure_spec_rps20_min30.csv trace --trace-dir artifacts/azure-trace \ 
>         --request-rate 20 --target-duration 30 spec 

The experiment specification produced by ShrinkRay can then be used as input to FaaSRail’s Load 
Generator. As an example, to run the generator’s HTTP-based plugin against a deployed FaaS stack, 
one can issue the following:   

$ RUST_LOG='rgv3=debug,reqgen_common=debug,snaplace=info,snaplace_grpc=info' \ 
> numactl -N1 -l target/release/rgv3-faascell \ 
> --source-address '147.102.4.82:60051' --sink-address '147.102.4.82:60052' \ 
> --minio-address 'icy1.cslab.ece.ntua.gr:59000' -o /tmp/tmpfs/sink.json \ 
> --inv-log /tmp/tmpfs/inv_log.json --invoc-id 0 \ 
> --csv artifacts/azure__rps20__min30.csv --seed 0 

The output on stderr provides details about the invocation requests issued for each Function, along 
with their timestamp and input information.  
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5 Summary 

This report presented the artifacts developed in the first half of the AERO project, in the context of 
WP5 “EU Cloud Services”.  Due to the delays in the availability of the Rhea platform, some of the 
planned work has been re-focused on alternative platforms. The software components that are 
released as part of WP5 are available in the respective AERO repositories, which are provided as part 
of the report. This document provides an overview of the software components and includes 
instructions on how to build and run the artifacts. 


