friried applied
e sciences

Review

Overview on Intrusion Detection Systems Design Exploiting
Machine Learning for Networking Cybersecurity

Pierpaolo Dini *{7, Abdussalam Elhanashi (7, Andrea Begni !, Sergio Saponara !, Qinghe Zheng 2

and Kaouther Gasmi 3

check for
updates

Citation: Dini, P; Elhanashi, A.;
Begni, A.; Saponara, S.; Zheng, Q.;
Gasmi, K. Overview on Intrusion
Detection Systems Design Exploiting
Machine Learning for Networking
Cybersecurity. Appl. Sci. 2023, 13,
7507. https://doi.org/10.3390/
app13137507

Academic Editor: Luis Javier Garcia
Villalba

Received: 30 May 2023
Revised: 20 June 2023
Accepted: 21 June 2023
Published: 25 June 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Information Engineering, University of Pisa, 56126 Pisa, Italy;
a.elhanashi@studenti.unipi.it (A.E.); a.begni88@gmail.com (A.B.); sergio.saponara@unipi.it (S.S.)

School of Intelligence Engineering, Shandong Management University, Jinan 250100, China;
15005414319@163.com

Department of the Computer Science, University of Tunis, Tunis 1007, Tunisia; kaouther.gasmi@enit.rnu.tn
* Correspondence: pierpaolo.dini@ing.unipi.it

Abstract: The Intrusion Detection System (IDS) is an effective tool utilized in cybersecurity systems
to detect and identify intrusion attacks. With the increasing volume of data generation, the possibility
of various forms of intrusion attacks also increases. Feature selection is crucial and often necessary to
enhance performance. The structure of the dataset can impact the efficiency of the machine learning
model. Furthermore, data imbalance can pose a problem, but sampling approaches can help mitigate
it. This research aims to explore machine learning (ML) approaches for IDS, specifically focusing on
datasets, machine algorithms, and metrics. Three datasets were utilized in this study: KDD 99, UNSW-
NB15, and CSE-CIC-IDS 2018. Various machine learning algorithms were chosen and examined
to assess IDS performance. The primary objective was to provide a taxonomy for interconnected
intrusion detection systems and supervised machine learning algorithms. The selection of datasets is
crucial to ensure the suitability of the model construction for IDS usage. The evaluation was conducted
for both binary and multi-class classification to ensure the consistency of the selected ML algorithms
for the given dataset. The experimental results demonstrated accuracy rates of 100% for binary
classification and 99.4In conclusion, it can be stated that supervised machine learning algorithms
exhibit high and promising classification performance based on the study of three popular datasets.

Keywords: intrusion detection systems; machine learning; feature selection; data management;
KDD 99; UNSW-NB15; CSE-CIC-IDS 2018

1. Introduction
1.1. Overview

With the rapid growth of networking technologies and the increasing number of
cyber threats, ensuring effective cybersecurity has become a paramount concern. One
crucial aspect of cybersecurity is the detection and prevention of unauthorized access
and malicious activities within computer networks. Intrusion Detection Systems (IDS)
play a vital role in monitoring network traffic and identifying potential security breaches.
Traditional IDS methods rely heavily on signature-based approaches, which are limited
in their ability to detect novel and sophisticated attacks. To overcome these limitations,
researchers and practitioners have started to explore the integration of machine learning
techniques into IDS design. Machine learning (ML) has demonstrated remarkable success
in various domains, including natural language processing, computer vision, and pattern
recognition. Leveraging ML algorithms in the realm of networking cybersecurity offers
promising opportunities to enhance the accuracy and efficiency of intrusion detection
systems. ML-based IDS models can learn from large volumes of network data, detect
anomalous patterns, and adapt to evolving attack strategies [1-3]. This approach holds the
potential to improve the overall security posture by reducing false positives and detecting

Appl. Sci. 2023, 13, 7507. https:/ /doi.org/10.3390/app13137507

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137507
https://doi.org/10.3390/app13137507
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9425-7354
https://orcid.org/0000-0002-2514-1585
https://orcid.org/0000-0001-8037-7323
https://doi.org/10.3390/app13137507
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137507?type=check_update&version=4

Appl. Sci. 2023,13, 7507

2 of 34

previously unknown attacks. The design of IDS exploiting machine learning for networking
cybersecurity involves several key components. Firstly, a robust and comprehensive
dataset is required for training and evaluating the ML models. The proposed datasets
encompass a wide range of network traffic patterns, including both normal and malicious
activities, to enable effective learning. Secondly, suitable feature selection and extraction
techniques are crucial to capture relevant information from the network data [4]. These
features serve as input to the ML algorithms, enabling them to discern normal traffic from
potential intrusions. Furthermore, the choice of ML algorithms plays a vital role in IDS
design. Various algorithms, such as support vector machines, random forests, and deep
learning architectures, have been investigated for intrusion detection. Each algorithm has
its strengths and weaknesses, and the selection depends on factors such as the complexity of
the problem, the availability of data, and the desired trade-offs between detection accuracy
and computational efficiency. In this paper, we explore the design and implementation
of intrusion detection systems that exploit machine learning techniques for networking
cybersecurity. We examine various machine learning algorithms and methodologies that
have been applied to IDS for both binary and multi-classification approaches. We analyze
their strengths and weaknesses and discuss their suitability for different types of network
environments and attack scenarios.

1.2. Motivations

Intrusion detection systems (IDS) play a critical role in safeguarding computer net-
works by identifying and responding to security threats. The use of machine learning
models has gained popularity in IDS due to their ability to handle large volumes of data
and detect patterns in real-time. By leveraging machine learning models, IDS can learn
from historical data and detect new patterns that may indicate potential intrusions. This
helps to reduce false positives and enhance the accuracy of IDS. The application of machine
learning models in IDS is particularly important when dealing with diverse datasets. Dif-
ferent datasets may exhibit distinct characteristics, including various types of intrusions,
network configurations, and user behavior. Machine learning models can be trained on
different datasets and adapt to the unique characteristics of each dataset. This ensures
that IDS remains effective in detecting intrusions across a variety of environments. Net-
worked computer systems and the continuous availability of Internet services are crucial
for modern society, which heavily relies on them for almost every activity. However,
with the increasing use of Internet-based technologies, attackers can target computer sys-
tems without physically interfering with them, leading to malfunctions and compromising
security in terms of confidentiality, availability, and integrity. Network traffic comprises
packets characterized by properties such as duration, protocol type, and the amount of
data transferred between source and destination. Since attackers can compromise packets
by modifying their content during creation or transit, it is vital to identify attacks and
ensure service integrity, considering the impossibility of creating a completely attack-free
networked computer system. The number of anomalies, such as misconfigurations of
network devices, port scans as preparations for future attacks, resource-consuming and
self-spreading viruses and worms, or denial of service (DoS) attacks that render network
services unavailable, increases proportionally with the growth of network traffic. Effective
detection and diagnosis of such anomalies are crucial to guarantee proper and reliable
functioning [5]. In this context, network security and reliability become even more crucial
in safety-critical systems (SCS). An SCS refers to a system whose failure or malfunction
can result in equipment/property loss or severe damage, environmental harm, or serious
injury or death to people. SCS encompasses various applications such as robots for indus-
trial automation, logistics and human assistance, vehicles, medical systems, and defense.
The continuous evolution towards software-defined autonomous and connected systems
further escalates the risk of cyber attacks and their consequences. Therefore, the availability
of intrusion and anomaly detection capabilities is of utmost importance for SCS. Certain
literature works employ the IDS concept to manage communication flow anomalies in

Appl. Sci. 2023,13, 7507

3o0f34

the context of control systems in mechatronic and industrial applications [6-12]. Unlike
attack monitoring algorithms in communication network contexts, which tend to asso-
ciate a dynamic model with overall behavior in a complex manner, a hybrid approach
combining model-based and data-driven techniques is employed. This involves utilizing
state observers and estimates through stochastic analysis of the residuals between the
model and direct process measurements. While this work often proposes specific anomaly
detection solutions with known integration into the overall system, the IDS problem in
the context of this article, focusing on the security of communication networks, is more
complex. The attack is not treated merely as an additive nuisance that perturbs the model
relative to nominal behavior. Hence, this article places significant emphasis on the security
aspects of communication networks, considering three of the most widely used datasets
in these applications. There have been significant advancements in the design of machine
learning-based Intrusion Detection Systems (IDS) for network cybersecurity. However,
there are still several research gaps and limitations that need to be addressed. One major
research gap is the lack of labeled datasets for training and evaluating IDS models. Existing
publicly available datasets suffer from issues like insufficient size, lack of diversity in attack
scenarios, or outdated data, which makes it difficult to develop robust and generalized IDS
models capable of detecting novel and sophisticated attacks. Another limitation is the lack
of transparency and interpretability of machine learning-based IDS models, particularly
deep learning algorithms, which operate as black boxes, making it challenging to under-
stand the decision-making process. This lack of transparency hampers trust and adoption,
especially in critical network security applications where explanations for detected threats
are crucial. Additionally, existing work often focuses on a binary classification, distin-
guishing between normal and malicious network traffic, without exploring more detailed
classification schemes like identifying specific attack types or characterizing the severity of
an intrusion.

1.3. Machine Learning in Network Security

Within Control Systems (CS) networks, a wide array of components engage in com-
munication with one another. An assailant possessing proficient knowledge of networks,
operating systems, and software can exploit these components to gain unauthorized access
and carry out malicious activities within the control system. Among the numerous types of
attacks that a network may encounter, three notable threats deserve attention: Denial of
Service (DOS), Spoofing, and Eavesdropping. During a DOS attack, the intruder inundates
the network with a barrage of either valid or invalid messages, thereby impairing the avail-
ability of network resources. Spoofing, on the other hand, involves the attacker assuming
the identity of a legitimate user to gain unauthorized access to privileged data and network
resources. Eavesdropping refers to attacks on the confidentiality of data transmitted across
the network. In wireless networks, eavesdropping by third parties poses a significant
threat since attackers can intercept transmissions over the air from a considerable distance,
beyond the premises of the company. The ongoing cat-and-mouse game between attackers
and Intrusion Detection Systems (IDS) has spurred significant advancements in security
measures. However, it has also given rise to increasingly subtle and difficult-to-identify
attack methods. Here are some key points of benefit introduce by ML in the context of
networking cybersecurity:

* Threat detection: Machine learning can be used to develop predictive models capable
of identifying and detecting suspicious behavior or cyber attacks in communication
networks. These models can analyze large amounts of data in real time from various
sources, such as network logs, packet traffic and user behavior, in order to identify
anomalies and patterns associated with malicious activity.

* Automation of attack responses: Automation is a key aspect in the security of com-
munication networks. Using machine learning algorithms can help automate an
attack response, allowing you to react quickly and effectively to threats. For example,
a machine learning system can be trained to recognize certain types of attacks and

Appl. Sci. 2023,13, 7507

4 0f 34

automatically trigger appropriate countermeasures, such as isolating compromised
devices or changing security rules.

Detect new types of attacks: As cyberthreats evolve, new types of attacks are con-
stantly emerging. The traditional signature-based approach may not be enough to
detect these new threats. The use of machine learning algorithms can help recognize
anomalous patterns or behavior that could indicate the emergence of new types of
attacks, even in the absence of specific signatures.

Reduce False Positives: Traditional security systems often generate large numbers of
false positives, that is, they falsely report normal activity as an attack. This can lead
to wasted time and valuable resources in dealing with non-relevant reports. Using
machine learning models can help reduce false positives, increasing the efficiency of
security operations and enabling more accurate identification of real threats.
Adaptation and continuous learning: Machine learning models can be adapted and
updated in real time to address new threats and changing conditions of communication
networks. With continuous learning, models can improve over time, gaining greater
knowledge of threats and their variants.

Ultimately, using machine learning in communication network security offers a num-

ber of benefits, including the ability to spot threats in real time, automate responses, detect
new types of attacks, and reduce false positives. These benefits help improve overall
network security and protect underlying data and assets.

As schematically shown in Figure 1, the machine learning paradigm is composed of

the following main steps:

Data Collection: The initial phase involves the collection of training data. This data
consists of labeled examples, i.e., pairs of matching inputs and outputs. For example,
if we are trying to build a model to recognize images of cats, the data will contain
images of cats labeled “cat” and different images labeled “not cat”.

Data preparation: This phase involves cleaning, normalizing, and transforming the
training data to make it suitable for processing by the machine learning model. This
can include eliminating missing data, handling categorical characteristics, and nor-
malizing numeric values.

Model selection and training: In this phase, you select the appropriate machine
learning model for the problem at hand. The model is then trained on the training
data, which consists of making the model learn the patterns and relationships present
in the data. During training, the model is iteratively adjusted to minimize the error
between its predictions and the corresponding output labels in the training data.
Model Evaluation: After training, the model is evaluated using separate test data,
which was not used during the training. This allows you to evaluate the effectiveness
of the model in generalizing patterns to new data. Several metrics, such as accuracy,
precision, and area under the ROC curve, are used to evaluate model performance.
Model Usage: Once the model has been trained and evaluated, it can be used to make
predictions on new input data. The model applies the relationships learned during
training to make predictions about new input instances.

In the following sections the main types of ML models and the preliminary data

manipulation techniques for the optimal training of the selected algorithm will be described
in great detail, as well as a presentation of the results of applying ML algorithms on the
most important datasets for validation of ML-based systems in the IDS context.

Appl. Sci. 2023,13, 7507

5 of 34

Machine Learning paradigm

/ Off-line Phase \
(Training + Validation)

Training Data

{———p th

Train the
Machine Learning Evaluate
Algorithm

Model

Tommonmon Q
otoN010M0
10oM0110M
w

Input Data Machine Learning Prediction
Algorithm)

On-line Phase
_ (Test) %

Figure 1. Schematic representation of the machine learning workflow.

1.4. Contribution

This paper delves into the exploration of different machine learning models, with the
objective of evaluating their performance in addressing issues related to data traffic security.
While existing state-of-the-art studies tend to focus on a limited selection of machine
learning models, offering minimal comprehensive comparisons in terms of the effectiveness
of available solutions, this research stands out by conducting extensive testing of numerous
machine learning models. This approach allows for a critical evaluation of the strengths and
weaknesses inherent in each model. Many existing papers in the literature propose models
tailored exclusively for either binary classification or multi-class problems. However, this
article takes a broader approach by testing the selected models for both binary and multi-
class classification scenarios, significantly enriching the depth of the technical analysis
presented. The contributions made by this study can be summarized as follows:

¢ A thorough analysis of multiple machine learning algorithms has been conducted
to effectively handle the processing of large volumes of network traffic data. These
algorithms can be scaled to accommodate the expanding sizes of networks, resulting
in the development of a robust and efficient intrusion detection system.

* The impact of dataset selection on the performance of intrusion detection systems has
been explored in this study. By comparing the performance of intrusion detection
systems across three distinct datasets (KDD 99, UNSW-NB15, and CSE-CIC-IDS 2018),
a better understanding of the influence of dataset choice on system performance has
been achieved.

¢ This research has made significant contributions to the advancement of effective
feature engineering techniques, which are essential for constructing successful ma-
chine learning models. These techniques encompass feature selection, feature scaling,
and feature normalization, enhancing the overall effectiveness of the models.

Appl. Sci. 2023,13, 7507

6 of 34

¢ Additionally, this study proposes an analysis of the computational time required
by different models, a factor often overlooked in existing literature. This inclusion
enriches the performance analysis of the models across the selected datasets.

2. Related Works

Machine learning (ML) is a field of study within artificial intelligence that focuses on
computer algorithms capable of improving automatically through experience and data
utilization. ML algorithms construct models by analyzing sample data, referred to as
“training data”, to make predictions or decisions without explicit programming. ML tasks
can be categorized into four paradigms: Supervised Learning, Unsupervised Learning,
Semi-supervised Learning, and Reinforcement Learning. For the purpose of this paper, we
will solely analyze the category of Supervised Learning. Supervised Learning involves
the learning of a function that can map inputs to outputs based on a set of input-output
examples. Each example consists of an input object, typically represented as a vector, and its
corresponding desired output value. By examining the training data, algorithms generate
an inferred function that can be employed to map new examples. The primary objective
of the algorithm is to accurately determine class labels for unseen observations, making
the ability to generalize from the training data crucial. Among the various supervised ML
algorithms discussed in the literature, we have selected the most widely used approaches
in the field of classification. Our review is very detailed in analyzing the various ML
models, to which in fact a detailed subsection is dedicated in which in addition to an
overview, as is done in most review papers the state of the art is presented and compared
the results obtained by applying each model to 3 different datasets. Moreover, note that
each of the three represents a kind of standard for testing ML/ Al classifiers for verifying
the performance of IDS systems. It should also be noted that each model and the results
obtained are the result of new tests carried out to obtain an analysis of the models with the
same calculation system used. This type of analysis is substantially absent in the reviews of
the state of the art found in the literature in which only the results deriving from scientific
research articles are taken and compared with those obtained by other authors. In our
opinion, this is a serious flaw in the overview articles of ML methodologies as they are
strongly dependent on the SW modules, and on the type of HW used, which must be the
same to make an exhaustive comparison. The rest of the section is divided into subsections
dedicated to the ML models taken into consideration in which not only the technical aspects
are analyzed but also the pros and cons in the context of the design of IDS systems.

2.1. Support Vector Machine

Support Vector Machine (SVM) is a widely utilized supervised learning approach for
regression problems [13]. It is commonly employed in machine learning for regression and
classification tasks. The primary objective of SVM is to determine the optimal line and
decision boundary that effectively separates classes in an n-dimensional space, enabling
accurate categorization of new data points [14]. SVM constructs a hyperplane or a set of
hyperplanes in a high or infinite-dimensional space, which can be applied to classification,
regression, and outlier detection tasks [14]. The quality of separation achieved by SVM
relies on the hyperplane that maximizes the distance to the nearest training data point
from any class, also known as the functional margin. A larger margin leads to a lower
generalization error, thereby improving the classifier’s performance [14]. In the field
of intrusion detection systems, SVM is widely employed. Studies have tested SVM on
the KDD 99 dataset by varying the number of features [15] or by exploring different
SVM kernel types to evaluate accuracy [16]. SVM has also been tested on the UNSW-
NB15 dataset, comparing its performance with other binary and multi-class classification
methods [17,18]. Furthermore, SVM has been utilized with the CSE-CIC-IDS2018 dataset
in work by Kanimozhi et al. [19] and Liu et al. [20]. Support Vector Machine (SVM)
is a widely employed machine learning algorithm in intrusion detection systems. One
of its key advantages is its ability to accurately classify complex and high-dimensional

Appl. Sci. 2023,13, 7507

7 of 34

datasets, which is crucial for detecting unknown and evolving cyber threats. SVM is capable
of handling both linear and non-linear data and can efficiently process large datasets.
However, one of the drawbacks of SVM is the potentially time-consuming training process,
particularly with large datasets. Additionally, the performance of SVM heavily relies on
selecting appropriate parameters, which can pose a challenge. Moreover, the presence of
irrelevant and noisy data can negatively impact the accuracy of intrusion detection using
SVM [15,20]. In summary, SVM is a popular machine learning algorithm used in intrusion
detection systems. It demonstrates strong performance in accurately classifying complex
datasets, but considerations should be given to training time, parameter selection, and the
presence of irrelevant data to ensure effective intrusion detection.

Support Vector Machines (SVM) is a supervised learning algorithm used for both
classification and regression tasks. It aims to find the optimal decision boundary, known
as the hyper-plane, that separates data points belonging to different classes in a high-
dimensional feature space. Given a training dataset with labeled examples, the SVM
learning process involves the following steps:

Feature Mapping: If the data is not linearly separable in the input space, SVM uses a
kernel function to map the input data into a higher-dimensional feature space. This allows
for finding a linear decision boundary that can separate the classes in the transformed
space. Margin Maximization: SVM aims to find the hyperplane that maximizes the margin
between the support vectors, which are the data points closest to the decision boundary.
The margin is the distance between the hyperplane and the support vectors. The larger the
margin, the better the generalization performance of the SVM.

Soft Margin (C-parameter): In cases where the data is not perfectly separable, SVM
allows for some misclassifications by introducing a regularization parameter called the
C-parameter. This parameter controls the trade-off between maximizing the margin and
minimizing the misclassification errors. A smaller C-value allows for a larger margin but
permits more misclassifications, while a larger C-value reduces the margin to achieve better
classification accuracy.

Optimization: The SVM learning algorithm solves a constrained optimization prob-
lem to find the optimal hyperplane. The objective is to minimize the classification error
and maximize the margin. This is typically done using quadratic programming techniques.
The decision function of an SVM can be represented as:

N
f(x) = sign()_ ajy;iK(x;, x) +b) 1)
=

where f(x) is the predicted class label for a new data point x, a; and y; are the Lagrange
multipliers and class labels for the support vectors, K(x;, x) is the kernel function that
measures the similarity between the support vectors and the new data point, and b is the
bias term. During the learning process, the SVM determines the optimal values of «;, y;,
and b by solving the optimization problem, typically using optimization algorithms like
Sequential Minimal Optimization (SMO). Once the SVM model is trained, it can be used
to make predictions on new, unseen data points by evaluating the sign of the decision
function. In summary, the learning process of Support Vector Machines involves mapping
the data to a higher-dimensional feature space, maximizing the margin between support
vectors, optimizing the decision function parameters, and making predictions based on the
learned model. Please note that the above explanation provides a general understanding
of SVM learning. SVM have various extensions and variations, such as kernel selection,
handling imbalanced data, and handling multi-class problems, which can be explored in
more detail for a comprehensive understanding of SVM.

2.2. Decision Tree

The decision tree algorithm is a popular supervised learning approach widely utilized
in data mining and statistics [21,22]. It serves as a predictive model for analyzing a set

Appl. Sci. 2023,13, 7507

8 of 34

of observations and visually representing decision-making processes. Its simplicity and
integration make it one of the most popular machine learning algorithms. The decision tree
algorithm utilizes a data structure called a “tree” to predict outcomes for specific problems.
In the supervised approach, the algorithm is trained on a collection of pre-processed data.
The main concept is to partition the data space into dense and sparse regions using the
decision tree. The splitting of the binary tree can be either binary or multi-way, and the
algorithm continues splitting until the data becomes sufficiently homogeneous. At the end
of the training process, a decision tree is generated, which can be used to make accurate
predictions. Decision trees are particularly useful for handling non-linear data. Their
simplicity and ease of understanding and implementation contribute to their wide usage in
various contexts [21,22]. In the field of intrusion detection systems, decision tree methods
have been applied in work by Lee et al. [23], Amor et al. [24], and others [25,26]. The
advantages of using decision trees for intrusion detection include their ability to handle
large volumes of data, handle both continuous and categorical data, and provide clear
and interpretable results. However, decision tree algorithms are susceptible to over-fitting,
which can lead to biased results when the training data is imbalanced. Additionally,
decision tree algorithms can be computationally intensive, and their performance may
degrade with increasing tree size.

Decision Trees are supervised learning algorithms used for both classification and
regression tasks. They create a model that predicts the value of a target variable by learning
simple decision rules inferred from the data features. The learning process of a Decision
Tree involves the following steps: (i) Attribute Selection : The algorithm starts by selecting
the best attribute to split the data. This attribute should have the highest predictive power
and effectively partition the data into subsets that are more homogeneous with respect to
the target variable. The selection is typically based on measures like information gain, Gini
index, or entropy; (ii) Splitting: Once the attribute is selected, the data is partitioned into
subsets based on the attribute values. Each subset represents a different branch or path
in the tree, corresponding to a specific attribute value; (iii) Recursive Construction: The
above steps are repeated recursively for each subset or branch until a stopping criterion
is met. This criterion could be reaching a maximum depth, having a minimum number
of samples in a leaf node, or achieving a specific level of purity in the subsets; (iv) Leaf
Node Assignment: At each leaf node, the majority class or the mean value of the target
variable is assigned as the predicted value. For classification tasks, the class with the
highest frequency is selected, while for regression tasks, the mean or median value is
used. The decision-making process in a Decision Tree can be represented using conditional
statements. Each internal node represents a decision based on an attribute, and each leaf
node represents a prediction. During the learning process, the algorithm constructs the
tree by recursively selecting the best attribute, creating branches, and assigning values to
leaf nodes. The selection of attributes and splitting points aims to maximize the predictive
power and minimize the impurity within each subset. Once the Decision Tree is constructed,
it can be used to make predictions on new, unseen data points by traversing the tree based
on the attribute values of the data point until reaching a leaf node, where the prediction
is obtained. In summary, the learning process of Decision Trees involves selecting the
best attribute to split the data, recursively partitioning the data based on attribute values,
assigning predictions to leaf nodes, and constructing a tree that represents a set of decision
rules for making predictions. Please note that the above explanation provides a general
understanding of Decision Tree learning. Decision Trees have various extensions and
variations, such as handling missing values, pruning to avoid over-fitting, and ensemble
methods like Random Forest and Gradient Boosting, which can be explored in more detail
for a comprehensive understanding of Decision Trees.

2.3. Random Forest

Random Forest is an ensemble learning algorithm primarily used for classification
tasks [27]. It extends the bagging approach by incorporating feature randomness to con-

Appl. Sci. 2023,13, 7507

9 of 34

struct a forest of uncorrelated decision trees. The Random Forest algorithm combines the
outputs of multiple decision trees to generate a final result. A Random Forest consists
of a collection of decision trees, with each tree in the ensemble created by sampling data
from a training set using a bootstrap sample. Before training, three key hyper-parameters
need to be set: the node size, the number of features to be sampled, and the number
of trees in the forest. The popularity of Random Forest stems from its ease of use and
flexibility in handling both classification and regression problems. Unlike individual de-
cision trees that consider all possible feature splits, Random Forest only selects a subset
of features. The prediction process varies depending on the problem type. For regression
tasks, the individual decision trees are averaged, while for classification tasks, the predicted
class is determined by a majority vote based on the most frequent categorical variable [27].
In the field of intrusion detection systems, Random Forest has been widely utilized and
tested with datasets such as KDD 99 [28,29], where it has been compared to SVM. It is
also commonly employed with UNSW-NB15 [30,31] and CSE-CIC-IDS2018 [19]. Random
Forest exhibits several advantages for intrusion detection, including its ability to handle
high-dimensional and complex data, making it suitable for detecting anomalies in large
datasets. It also performs well in the presence of noisy data, which is common in intrusion
detection systems due to false alarms and other anomalies. However, Random Forest can
be slow when processing large datasets, and it requires a significant amount of training
data, posing a challenge when working with limited data in intrusion detection systems.
Random Forest is an ensemble learning algorithm that combines the outputs of mul-
tiple decision trees to make predictions. It is widely used for both classification and
regression tasks. The learning process of Random Forest involves the following steps:

1 Bootstrapped Sampling: Random Forest starts by creating multiple subsets of the
original training data through bootstrapped sampling. This sampling technique
involves randomly selecting data points from the original dataset with replacement.
Each subset is called a bootstrap sample and is used to train a separate decision tree;

2 Random Feature Selection: For each decision tree in the Random Forest, a random
subset of features is selected. This process introduces randomness and reduces the
correlation between trees. The number of features in the subset is typically determined
by a hyper-parameter called “max_features”.

3 Decision Tree Construction: Using the bootstrapped sample and the randomly selected
feature subset, a decision tree is constructed for each subset. The construction follows
the same steps as in the standalone decision tree learning process, including attribute
selection, splitting, and recursive construction;

4 Voting or Averaging: Once all the decision trees are constructed, predictions are
made by either voting (for classification tasks) or averaging (for regression tasks)
the predictions of individual trees. In classification tasks, the class with the highest
number of votes is chosen as the final prediction. In regression tasks, the mean or
median value of the predictions is taken as the final prediction.

Lets define a Random Forest ensemble with N decision trees. Each decision tree,
denoted as Tj, is constructed using a bootstrapped sample D; from the original training
dataset D. Additionally, a random subset of features, denoted as F;, is selected for each tree.
For classification tasks, the Random Forest prediction function can be defined as:

T;(X
Ypred = argmax(%),i = 1toN),)
where .4 is the predicted class, T;(X) represents the prediction of tree T; for input features
X, and argmax(x) is the function that returns the class with the highest vote. For regression
tasks, the Random Forest prediction function can be defined as:

Ypred = wz = 1toN, 3)

Appl. Sci. 2023,13, 7507

10 of 34

where Y, is the predicted value, and T;(X) represents the prediction of tree T; for input
features X.

The randomness introduced through bootstrapped sampling and random feature
selection helps to reduce over-fitting and improve the generalization ability of the Random
Forest model. By combining the predictions of multiple trees, Random Forest leverages
the wisdom of the crowd and provides more robust and accurate predictions compared
to a single decision tree. It is important to note that there are additional considerations
in Random Forest, such as hyper-parameter tuning, out-of-bag estimation, and feature
importance analysis, which can further enhance the performance and interpretability of
the model.

2.4. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a multivariate technique used to classify indi-
vidual observation vectors into predefined groups based on measurements [32]. Unlike
cluster analysis, LDA is a supervised method that relies on a training dataset with pre-
assigned groups. LDA, also known as Fisher’s linear discriminant, aims to find a linear
combination of features that effectively distinguishes between classes of objects. It belongs
to the analysis of variance family, where one independent variable is expressed as a linear
combination of other features. LDA assumes that the features are independent variables
for each observation. The goal of LDA is to create synthetic features, which are linear
combinations of the original variables, that best capture the differences between known
groups while minimizing the variances within the groups. By using statistical parameters,
LDA constructs a boundary between the known classes of training objects. This boundary
is defined by a discriminant function, which assigns a score or value to a test object, indi-
cating the group to which the new object should be assigned [33]. LDA has been widely
employed in intrusion detection research, particularly in studies using the KDD 99 [34,35],
UNSW-NB15 [36], and CSE-CIC-IDS2018 [37] datasets. These studies often compare the
performance of LDA with other intrusion detection methods. The main advantage of using
LDA for anomaly detection is its effectiveness in handling large datasets and achieving
high accuracy. LDA can identify patterns in the data and make predictions based on these
patterns, making it a powerful tool for anomaly detection. However, there are also some
limitations to consider when using LDA for anomaly detection. One major drawback is
that it requires a substantial number of features to be effective. This is because LDA is
designed to work with multidimensional data, necessitating a sufficient number of features
to capture all relevant patterns and relationships. Additionally, LDA can be sensitive to
noisy data, which may lead to false positive anomalies.

Linear Discriminant Analysis is a statistical method used for supervised classification
problems. It aims to find a linear combination of features that maximizes the separation
between predefined classes. The learning process of LDA involves the following steps:

e Data Preprocessing: LDA requires a training dataset with predefined classes. The train-
ing dataset consists of feature vectors X and their corresponding class labels y;

* (Class-wise Summary Statistics: For each class in the training dataset, LDA computes
class-specific summary statistics. These statistics include the mean vector y and the
covariance matrix X of the features within each class;

* Between-class Scatter Matrix: LDA computes the between-class scatter matrix (SB),
which measures the separation between different classes. It is defined as the sum
of the outer products of the difference between class means and the overall mean,
weighted by the number of samples in each class.

SB =Y (Ni(p; — pu)(pi — u)"))

where Ni is the number of samples in class i, y; is the mean vector of class i, mu is the
overall mean vector.

Appl. Sci. 2023,13, 7507

11 of 34

e Within-class Scatter Matrix: LDA computes the within-class scatter matrix (SW), which
measures the spread of the samples within each class. It is defined as the sum of the
covariance matrices of each class, weighted by the number of samples in each class.

SW =Y (Nixy),)

where ; is the covariance matrix of class i.

e Fisher’s Criterion: LDA aims to find a projection that maximizes the separation
between classes while minimizing the scatter within each class. This is achieved
by computing Fisher’s criterion, which is the ratio of the determinant of SB to the
determinant of SW.

J(w) = (w'SBw) /(w' SWw), (6)

where w is the projection vector.
* Projection Vector: To find the optimal projection vector w, LDA solves the generalized
eigenvalue problem:
SBw = ASWuw, (7)

where A is the eigenvalue corresponding to w.

¢ Dimensional Reduction: LDA selects the top k eigenvectors corresponding to the largest
eigenvalues as the projection vectors. These projection vectors form a lower-dimensional
subspace that preserves the most discriminating information between classes.

e (lassification: To classify a new observation, LDA projects it onto the subspace
spanned by the projection vectors and assigns it to the class with the closest mean in
the projected space.

LDA assumes that the features follow a multivariate normal distribution and that the
covariance matrices are equal across classes. It seeks to find a linear decision boundary
that maximizes the separation between classes while minimizing the overlap within each
class. By capturing the underlying structure of the data and finding an optimal projection,
LDA provides a powerful tool for classification problems, especially when the classes are
well-separated. It is important to note that there are variations of LDA, such as Regular-
ized Discriminant Analysis (RDA) and Quadratic Discriminant Analysis (QDA), which
relax certain assumptions and extend the applicability of the method to different types of
data distributions.

2.5. K-Nearest Neighbors

The K-nearest neighbors algorithm (KNN) is a non-parametric supervised learning
method. It is commonly used for classification and regression problems. KNN classifies
unlabeled observations by assigning them to the class of the most similar labeled examples.
The similarity is determined based on distance calculations between observations. The
algorithm stores the data and identifies the nearest points based on their similarity to
classify them into classes. The neighbors are obtained from a set of classes where the object
properties are known. The KNN algorithm uses a positive integer, typically small, called K
to determine the number of nearest neighbors considered for classification. For example,
when K = 1, only the closest neighbor is considered for determining class membership.
In regression tasks, the output value is the average of the K neighboring values. To
ensure accurate results, it is important to normalize or standardize the dataset since KNN
relies on distance calculations. KNN is widely utilized in developing intrusion detection
systems (IDS) in computer networks, as seen in previous studies [38—42]. One of the
key advantages of KNN is its simplicity and ease of understanding, making it suitable
for small-scale or entry-level systems. It is also fast, efficient, and accurate, making it
suitable for real-time intrusion detection. Additionally, KNN does not require extensive
training or high computational resources, making it a cost-effective solution for intrusion
detection. However, the performance of the KNN algorithm heavily relies on the quality of

Appl. Sci. 2023,13, 7507

12 of 34

the training data. Outdated or irrelevant data can impact its effectiveness and may lead to
incorrect classifications.

KNN is a supervised learning algorithm used for both classification and regression
tasks. It is a non-parametric method that makes predictions based on the similarity between
input data points. The learning process of KNN involves the following steps:

* Data Preparation: The training dataset consists of labeled examples, where each
example is represented by a feature vector X and its corresponding class label y.

* Choosing the Value of k: The value of k, representing the number of nearest neighbors
to consider, needs to be determined. Typically, k is chosen based on domain knowledge
or through cross-validation.

e Computing Distance: KNN utilizes a distance metric, such as Euclidean distance or
Manhattan distance, to measure the similarity between feature vectors. Lets denote
the distance metric as dist(x1, x), where x1 and x; are two feature vectors.

e Finding K Nearest Neighbors: Given an input data point x, the distances between x
and all data points in the training set are computed. The k nearest neighbors of x are
selected based on the smallest computed distances. Lets denote the set of k nearest
neighbors as N(x).

* Voting or Averaging: For classification tasks, KNN employs majority voting to de-
termine the class label of the input data point. It assigns the class label that is most
frequent among the class labels of the k nearest neighbors in N(x). Mathematically,
the predicted class label for x, denoted as y.q, is given by:

Yprea = argmax(Y_(yi € N(x))I(y;)) ®)

where y; represents the class label of the ith neighbor in N(x), I(*) is the indicator
function, and argmax(x) returns the class label with the highest count. For regression
tasks, KNN takes the average of the target values of the k nearest neighbors to make a
prediction. Mathematically, the predicted value for x, denoted as ¥4, is given by:

Ypred = (1/k) Z(J/i € N(x))yi)

where y; represents the target value of the ith neighbor in N(x).

* Handling Ties: In cases where there is a tie in the number of votes for different classes
during majority voting, various strategies can be employed. For example, KNN may
select the class label of the nearest neighbor among the ties or use weighted voting
based on the distances.

* Predicting with the Trained Model: Once the KNN model is trained on the training
dataset, it can be used to make predictions on new, unseen data points by following
the steps mentioned above.

It is important to note that the KNN algorithm does not involve an explicit learning
phase where a model is built. Instead, it stores the training data points and their corre-
sponding labels, and the actual learning occurs during the prediction phase by comparing
the input data point to the stored training data. KNN is a versatile algorithm that can
handle both numerical and categorical data. However, it is important to normalize or scale
the feature vectors to ensure that features with larger scales do not dominate the distance
calculations. Additionally, the choice of distance metric and the value of k can significantly
impact the algorithm’s performance.

2.6. Artificial Neural Network

Artificial Neural Network (ANN) is extensively discussed in the literature, particularly
in the context of classification. It is a mathematical model comprising interconnected
artificial neurons, designed for information processing and solving artificial intelligence
problems. Neural networks possess remarkable capabilities such as self-organization,
adaptive learning, and fault-tolerance. These qualities make them popular for pattern

Appl. Sci. 2023,13, 7507

13 of 34

recognition and classification tasks [43]. There are various types of Intrusion Detection
Systems (IDS) based on ANN, implemented with datasets like KDD 99 [41,44,45], UNSW-
NB15 [46,47], and CSE-CIC-IDS2018 [48,49]. One of the strengths of ANN is its ability to
handle non-linear relationships in data, which can pose challenges for traditional statistical
methods. However, ANN can be computationally expensive, especially when dealing
with real-time or high-volume data processing. Furthermore, the interpretability and
understanding of ANN models can be challenging, which may hinder their implementation
in certain applications.

Feed-forward neural networks are a type of artificial neural network in which infor-
mation propagates only in one direction, forward, without cycles or feedback. The learn-
ing process of feed-forward neural networks occurs through a process known as “back-
propagation” or error back-propagation. The learning process starts with the initialization
of the weights of the connections between the neurons in the network. The initial weights
can be randomly assigned or using a specific initialization method. The goal of learning is
to optimize these weights so that the network can produce accurate predictions for a given
problem. During the training phase, input data is fed into the network and propagates
through the various layers of neurons until it reaches the output layer. Each neuron in
the output layer produces a prediction based on the connection weights and the neuron’s
activation. The produced output is then compared to the desired output (class label) to
calculate the prediction error. Subsequently, the error is backward propagated through
the network using the error back-propagation mechanism. During this phase, the error is
divided and assigned proportionally to the neuron connections to determine the effect of
each connection on the overall error of the network. This is done using the weight update
rule, which allows adjusting the weights based on the incurred error. The weight update is
performed using an optimization algorithm such as gradient descent. The objective is to
minimize a cost function that represents the overall error of the network. During the weight
update, the gradients of the cost function with respect to the weights are computed and
used to update the weights so that the error decreases. This process of error propagation
and weight update is repeated for different training examples until the network achieves
good generalization ability, meaning it can produce accurate predictions for unseen data. In
summary, the learning process of feed-forward neural networks involves the forward prop-
agation of data through the network, calculation of prediction error, error back-propagation
to update the connection weights, and optimization of the cost function to minimize the
overall error of the network. This process enables the network to learn and adapt to the
training data, improving its ability to make accurate predictions. Formally, lets denote
the input to the network as x, the weights of the connections as W, the activation function
of a neuron as f, and the desired output as y. The output of a neuron j in layer I can be
calculated as:

Z=f Z Whal ™' + b}) (10)

where z;. is the weighted sum of inputs to neuron j in layer /, a} is the activation of neuron j
in layer [, W]-li is the weight of the connection between neuron i in layer / — 1 and neuron j
in layer [, ag_l is the activation of neuron i in layer I — 1, and b; is the bias term for neuron

jin layer I. The prediction error for a single training example can be measured using a
suitable loss function, such as mean squared error:

1 Moutput

E=5) (n—a)’ (11)
k=1

Appl. Sci. 2023,13, 7507

14 of 34

where Noutput is the number of neurons in the output layer, y; is the desired output for
neuron k in the output layer, and 4} is the actual output of neuron k in the output layer.
The weight update rule for the connection weights can be expressed as:

oE
1
Jt
where 7 is the learning rate, and 8?/5’ represents the derivative of the cost function with
ji

respect to the weight W]-li. The back-propagation algorithm computes the partial derivatives
of the cost function with respect to the weights in a layer-by-layer fashion, starting from the
output layer and moving backward to the input layer. This process is achieved by applying
the chain rule to calculate the gradients. The weight update rule can be further refined using
variations of gradient descent algorithms, such as stochastic gradient descent (SGD) or mini-
batch gradient descent, which update the weights based on subsets of training examples
rather than the entire dataset. These variations aim to improve the convergence speed
and overcome issues related to large datasets. The learning process continues iteratively,
with multiple passes through the training data, until the network converges to a state where
the prediction error is minimized. At this point, the network has learned the underlying
patterns and relationships in the training data and can make accurate predictions for
new, unseen data. In summary, the learning process of feed-forward neural networks
involves forward propagation of data, calculation of prediction error, back-propagation
of the error to update the weights using the gradient descent algorithm, and repetition
of this process until convergence. Through this iterative process, the network learns to
make accurate predictions and generalize to unseen data. Please note that the above
explanation provides a high-level overview of feedforward neural network learning and
the associated mathematical concepts. There are various additional aspects, techniques,
and variations that can be explored in greater detail for a comprehensive understanding of
neural network learning.

3. Selected Datasets

To effectively train and develop machine learning algorithms, a significant amount of
data is essential. The quantity and quality of data play a crucial role in determining the
performance of any machine learning problem, as the results heavily rely on the available
data. In the field of Intrusion Detection Systems (IDS), three primary datasets have gained
wide recognition in the literature. These datasets serve as benchmarks for evaluating
machine learning-based IDS systems, ensuring consistency and comparability across dif-
ferent approaches. It is important to note that the workflow described in this context is
specifically tailored for supervised learning. This implies that the observations used to
train the presented machine learning models are assumed to have correct labels assigned
beforehand. This allows for the evaluation of performance metrics post-training. However,
it is worth mentioning that this workflow can be adapted to accommodate unsupervised
learning approaches as well. In such cases, clustering algorithms are commonly employed
to obtain initial groupings and handle missing labels. The datasets discussed below, which
serve as the basis for training the models used in subsequent performance comparisons, are
widely recognized and extensively used for evaluating anomaly and intrusion detection
algorithms. Consequently, these datasets have become the standard benchmarks in this
domain, adding credibility to the presented work and enhancing its validity.

3.1. KDD 99

The KDD 99 dataset comprises a comprehensive collection of 25,192 TCP/IP connec-
tions (observations) derived from a simulated LAN environment resembling a typical US
Air Force setup. This network was specifically designed to mimic real-world conditions
and was subjected to various attacks to create a diverse dataset. In this context, a connection
refers to a sequence of TCP packets transmitted between a source IP address and a target

Appl. Sci. 2023,13, 7507 15 of 34

IP address under a well-defined protocol. These connections are characterized by their
start and end duration, along with the data exchanged. Each connection is labeled as
either “normal” or “anomalous” based on its behavior. Each recorded connection contains
approximately 100 bytes of data. A total of 41 features are extracted from each TCP/IP
connection, consisting of 38 quantitative features and 3 qualitative features. The class vari-
able, which determines if a connection is considered an intrusion or not, has two categories:
“Normal” and “Anomalous”. To provide a comprehensive overview of the dataset features,
Tables 1 and 2 present a list of these features along with brief descriptions. The features
are categorized as “Basic”, “Content-based”, “Time-based”, and “Connection-based”. Ad-
ditionally, the tables indicate whether each feature is “Continuous” (C) or “Discrete” (D)
in nature.

Table 1. Features Description KDD 99 part 1.

Feature Name Type Description
Basic Features
Duration C Length of the connection
Protocol-type D Type of protocol
Service D Network service at the dest.
Flag D Normal or error status of
the connection
Src-bytes C N. of data bytes from source to destination
Dst-bytes C N. of data bytes from destination to source
Land D 1 if connection is from/to the same host/port; 0 otherwise
Wrong fragment C N. of “wrong” fragments
Urgen C N. of urgent packets
Content-based Features
Hot C N. of “hot” indicators
Num-failed-logins C N. of failed login attempts
Logged-in D 1 if successfully logged-in; 0 otherwise
Num-compromised C N. of compromised conditions
Root-shell D 1 if root-shell is obtained; 0 otherwise
Su-attempted D 1if “su root” command
Num-root C N.of “root” accesses
Num-file-creations C N. of file creation operations
Num-shells C N. of shell prompt
Num-access-files C N. of operations on access control files
Num-outbound-cmds C N. of outbound commands in an FTP session
Is-host-login D 1if login belongs to the “hot” list; 0 otherwise
Is-guest-login D 1 if the login is a “guest” login; 0 otherwise

Table 2. Features Description KDD 99 part 2.

Feature Name Type Description
Time-based Features
Count C N. of connect. to the same host as the current connect. in the past2 s
Srv-count C N. of connect. to the same service as the current connection. in past 2 s.
Serror-rate C % of connect. that have SYN errors (same-host connect.)
Srv-error-rate C % of connect. that have SYN errors (same-service connect.)
Rerror-rate C % of connect. that have RE]J errors (same-host connect.)
Srv-error-rate C % of connect. that have RE]J errors (same-service connect.)
Same-srv-rate C % of connect. to the same service (same-host connect.)
Diff-srv-rate C % of connect. to different services (same-host connect.)
Srv-diff-host-rate C % of connect. to different hosts (same-service connect.)

Appl. Sci. 2023,13, 7507

16 of 34

Table 2. Cont.

Feature Name Type Description
Connection-based features
Dst-host-count C Count of dest. hosts
Dst-host-srv-count C Srv-count for dest. host
Dst-host-same-srv-rate C Same-srv-rate for dest. host
Dst-host-diff-srv-rate C Diff-srv-rate for dest. host
Dst-host-same-src-port-rate C Same-src-port-rate for dest. host
Dst-host-srv-diff-host-rate C Diff-host-rate for dest. host
Dst-host-error-rate C Serror-rate for dest. host
Dst-host-srv-error-rate C Srv-error-rate for dest. host
Dst-host-rerror-rate C Rerror-rate for dest. host
Dst-host-srv-rerror-rate C Srv-rerror-rate for dest. host

3.2. UNSW-NB15

The UNSW-NBI15 dataset is a widely recognized and freely available benchmark for
evaluating intrusion detection systems. It was created using the IXIA Perfect Storm tool
in the Cyber Range Lab at Canberra University. This dataset combines real-world normal
activities with synthetic contemporary attack behaviors to provide a comprehensive testing
environment. To generate the dataset, the Tcpdump tool was employed to capture 100 GB
of raw traffic data. The dataset includes nine different types of attacks, namely Analysis,
Backdoors, DoS, Exploits, Fuzzers, Generic, Reconnaissance, Shellcode, and Worms.

The Argus and Bro-IDS tools were utilized, resulting in the generation of 47 features
through the implementation of twelve algorithms. Tables 3 and 4 present a detailed list of
the dataset features, categorized into Flow features, Basic features, Content-based features,
Time-based features, General purpose features, and Connection-based features. Each
feature is characterized by its type, such as Nominal (N), Integer (I), Float (F), Timestamp
(T), or Binary (B). The dataset contains a total of 2,540,047 records, which are stored in
four .csv files. Additionally, raw traffic records in .pcap format are also available in the
repository. The dataset size corresponds to 2,540,047 observations with 47 features. More
information about the dataset can be found in the reference [50].

Table 3. Features Description UNSW-NB15 part 1.

Feature Name Type Description
Flow Features
srcip N Source IP address
sport I Source port number
dstip N Dest. IP address
dsport I Dest. port number
proto N Transaction protocol
Basic Features
state N State and its dependent protocol
dur F Record total duration
sbyte I Source to dest. bytes
dbytes I Dest. to source bytes
state I Source to dest. time to live
dttl I Dest. to source time to live
sloss I Source packets retransmitted or dropped
dloss I Dest. packets retransmitted or dropped
service N http, ftp, ssh, dns ..., else (-)
load F Source bits per second
load F Dest. bits per second
spkts I Source to dest. packet count
dpkts I Dest. to source packet count

Appl. Sci. 2023,13, 7507

17 of 34

Table 3. Cont.

Feature Name Type Description
Content-based Features
swin I Source TCP window advert.
dwin I Dest. TCP window advert.
step I 1 Source TCP sequence num.
dtcpb I Dest. TCP sequence num.
means I Mean of the flow packet size transmitted by the src
means I Mean of the flow packet size transmitted by the dst
trans_depth I Depth into the connection of http request/response transaction
res_bdy_len I Size of the data transferred from the server’s http service
Time-based Features
g’it F Source jitter
jit F Dest. jitter
stime T Record start time
Itime T Record last time
sintpkt F Source inter-packet arrival time
dintpkt F Dest. inter-packet arrival time
teprtt F The sum of “synack” and “ackdat” of the TCP
synack F Time between the SYN and the SYN_ACK packets of the TCP
ackdat F Time between the SYN_ACK and the ACK packets of the TCP
General purpose Features
is_sm_ips_ports B If source equals to dest. IP addresses and port n. are equal, it is 1
ct_state_ttl I N. for each state according to specific range of values
ct_flw_http_mthd I N. of flows that has methods such as Get and Post in HTTP service
is_ftp_login B If the ftp session is accessed by user and password then 1 else 0
ct_ftp_cmd I N. of flows that has a command in ftp session

Table 4. Features Description UNSW-NB15 part 2.

Feature Name Type Description
Connection-based Features
ct_srv_src 1 N. of connect. that contain the same service and dest.
in address 100 connect. according to the last time
ct_srv_dst 1 N. of connect. of the same dest. address in 100 connect.
according to the last time
ct_dst_Itm 1 N. of connect. of the same source address in 100 connect.
according to the last time
ct_src_dport_ltm I N. of connect. of the same source address
and the dest. port in 100 connect. according to the last time
ct_dst_sport_ltm I N. of connect. of the same dest. address
and the source port in 100 connect according to the last time
ct_dst_src_ltm 1 N. of connect. of the same source and the dest.

address in 100 connect.

3.3. CSE-CIC-IDS 2018

This dataset encompasses a comprehensive collection of observations, encompassing
both normal network traffic and 14 distinct types of attacks: SHH Brute Force, SQL In-
jection, Infiltration, FTP Brute Force, DoS attacks Slowloris, DoS attacks Slow HTTP Test,
DoS attacks Hulk, DoS attacks GoldenEye, DDoS attacks LOIC UDP, DDoS attacks LOIC
HTTP, DDoS attacks HOIC, Brute Force XSS, Brute Force Web, and Bot. The attacking
infrastructure involved in this dataset consists of 50 machines, while the victim organization
comprises 5 departments with 420 machines and 30 servers. The dataset includes network
traffic and system logs from each machine, with 75 features extracted from the captured traf-
fic using CICFlowMeter-V3. CICFlowMeter-V3, a Java-based network traffic flow generator,
offers flexibility in feature selection, addition, and control over the flow timeout duration.
Within the CSE-CIC-IDS 2018 dataset, profiles are employed to systematically generate
datasets. These datasets provide intricate intrusion descriptions and abstract distribution
models for applications, protocols, or lower-level network entities. The finalized dataset is
presented in CSV format, with each flow represented by four columns: Destination Port,
Protocol, Timestamp, and over 75 network traffic features mentioned previously. A total of

Appl. Sci. 2023,13, 7507 18 of 34

78 features are extracted, as listed in Tables 5 and 6. The dataset encompasses a voluminous
16,233,002 observations, each associated with 78 features. Notably, the last column signifies
the categories assigned to each observation [51].

Table 5. Features Description CSE-CIC-IDS2018 part 2.

Feature Name Description

fw_blk_rate_avg
bw_byt_blk_avg
bw_pkt_blk_avg
bw_blk_rate_avg

Average number of bulk rates in the forward direction
Average number of bytes bulk rate in the backward direction
Average number of packets bulk rate in the backward direction
Average number of bulk rate in the backward direction

subfl_fw_pk The average number of packets in a sub-flow in the forward direction
subfl_fw_byt The average number of bytes in a sub-flow in the forward direction
subfl_bw_pkt The average number of packets in a sub-flow in the backward direction
subfl_bw_byt The average number of bytes in a sub-flow in the backward direction
fw_win_byt Number of bytes sent in initial window in the forward direction
bw_win_byt Number of bytes sent in initial window in the backward direction
Fw_act_pkt Number of packets with at least 1 byte of TCP data payload in the forward direction
fw_seg_min Minimum segment size observed in the forward direction
atv_avg Meantime, a flow was active before becoming idle
atv_std Standard deviation time a flow was active before
becoming idle
atv_max Maximum time a flow was active before becoming idle
atv_min Minimum time a flow was active before becoming idle
idl_avg Meantime, a flow was idle before becoming active
idl_std Standard deviation time a flow was idle before becoming active
idl_max Maximum time a flow was idle before becoming active
idl_min Minimum time a flow was idle before becoming active
dstPort Dest. address
Protocol Type of protocol
Timestmap Date, and time of the event

Table 6. Features Description CSE-CIC-IDS2018 part 1.

Feature Name

Description

dst_port Destination Port proto N. of protocol
time_stmp Timestamp of the event
fl_dur Flow duration
fl_pkt_s Flow packets rate that is the number of packets
transferred per second

fl_iat_av, Average time between two flows

fl_iat_st Standard deviation time two flows

fl_iat_max Maximum time between two flows

fl iat min Minimum time between two flows

fw_iat_tot Total time between two packets sent in the forward direction

fw_iat_avg Mean time between two packets sent in the forward direction

fw_iat_std Standard deviation time between two packets sent in the forward direction
fw_iat_max Maximum time between two packets sent in the forward direction
fw_iat_min Minimum time between two packets sent in the forward direction
bw_iat_tot Total time between two packets sent in the backward direction
bw_iat_avg Mean time between two packets sent in the backward direction

bw_iat_std Standard deviation time between two packets sent in the backward direction

bw_iat_max
bw_iat_min

Maximum time between two packets sent in the backward direction
Minimum time between two packets sent in the backward direction

fw_psh_flag Number of times the PSH flag was set in packets traveling in the forward direction (0 for UDP)
bw_psh_flag Number of times the PSH flag was set in packets traveling in the backward direction (0 for UDP)
fw_urg_flag Number of times the URG flag was set in packets traveling in the forward direction (0 for UDP)
bw_urg flag Number of times the URG flag was set in packets traveling in the backward direction (0 for UDP)
fw_hdr_len Total bytes used for headers in the forward direction
bw_hdr_len Total bytes used for headers in the forward direction

fw_pkt_s Number of forwarding packets per second

bw_pkt_s Number of backward packets per second

pkt_len_min
pkt_len_max
pkt_len_av
pkt_len_st

Minimum length of a flow
Maximum length of a flow

Mean length of a flow

Standard deviation length of a flow

Appl. Sci. 2023,13, 7507

19 of 34

Table 6. Cont.

Feature Name

Description

pkt_len_va
fin_cnt
syn_cnt
rst_cnt
pst_cnt
ack_cnt
urg_cnt
cwe_cnt
ece_cnt
down_up_ratio
pkt_size_avg
fw_seg_avg
bw_seg_avg
fw_byt_blk_avg
fw_pkt_blk_avg

Minimum inter-arrival time of packet

Number of packets with FIN

Number of packets with SYN

Number of packets with RST

Number of packets with PUSH

Number of packets with ACK

Number of packets with URG

Number of packets with CWE

Number of packets with ECE

Download and upload ratio

Average size of packet

Average size observed in the forward direction

Average size observed in the backward direction

Average number of bytes bulk rate in the forward direction
Average number of packets bulk rate in the forward direction

4. ML Performance Evaluation

In the field of machine learning, the general focus is to predict an outcome using
the available set of data. For classification, the most common setting involves only two
classes, although there may be more than two. In this last case, the issue changes his name
and is called “multi-class classification” [52]. Once the ML models have been trained, it
is necessary to test them and use metrics to compare the performance of each algorithm.
The analysis in the case of IDS can be carried out in two ways: binary performance and
multi-class performance. The case of binary classification is applicable to all three datasets
in this work since only the binary labeling of each observation traffic is required. In the
case of multi-class classification, however, it is necessary that in each dataset, in addition to
labeling each observation of normal traffic, each observation of attack must also be labeled
with its specific type. In KDD 99, there is no labeling of attack observations. Multi-class
classification cannot be applied.

4.1. Binary Classification Metric

The models are only trained to distinguish normal data traffic from abnormal data
traffic using the binary labeling. In binary classification problem for network IDS, if Norm
(Normal traffic observation) and Att (Attack traffic observation) are the possible labels for
each observation:

® TP (true positive): if the model predicts Norm, it is also the correct answer.

* FP (false positive): if the model predicts Norm, the correct answer is Att.

* TN (true negative): if the model predicts Att, and it is also the correct answer
e FN (false negative): if the model predicts Att, the correct answer is Norm.

From this definition of the prediction result by the classification model, some perfor-
mance indices are defined to evaluate the model itself in terms of quality in classifying
ability. In this article we refer to ROC-like indexes [41,53], explained in the following.
Sensitivity (SE) or true-positive rate is the ratio of T-Norm to total traffic normal observations

in the data:
TP

“TP+FN
Specificity (SP) or true-negative rate is the ratio of TAtt to total traffic normal observations
in the data:

SE (13)

TN

- TN+FP
Precision (PR) or positive-predictive value is the proportion of normal traffic predicted

observations to the total predicted

SP (14)

TP

Pr=——"
"T IN+EP

(15)

Appl. Sci. 2023,13, 7507

20 of 34

Accuracy (AC) is the fraction of correctly identified results (attack and normal traffic).

TP+ TN

AC =
¢ TP+ TN+ FP+FN

(16)

4.2. Multi-Class Classification Metric

In this scenario, the models are trained to classify all specific types of attacks present in
the given dataset. The performance evaluation follows the same principles as in the binary
case. However, certain clarifications are necessary when defining performance metrics in
the multi-class case. When extending a binary metric to multi-class problems, the data is
treated as a collection of binary problems using the One-Vs-All (OVA) approach. In OVA
classification, a binary classifier model is created for each class in the dataset.

Based on these new classification labels, the same performance metrics used in the
binary case are computed for each class in the dataset [52,54]. After obtaining the binary
results for each class, there are two different approaches that can be taken:

* Macro-average: This method simply calculates the average of the binary metrics,
assigning equal weight to each class. It can be particularly useful when infrequent
classes hold significance, as it highlights their performance. With the Macro-average,
the effect of the most frequent classes is considered equally important as that of the
least frequent ones.

* Micro-average: In this approach, each sample-class pair contributes equally to the
overall metric. Instead of summing the metrics by class, it sums the numerators and
denominators that constitute the metrics by class to calculate an overall quotient.
The Micro-average is often preferred in multi-label or multi-class classification settings,
where the majority class must not dominate the evaluation.

The difference between these methods lies in how they weigh each class or sample.
Macro-average assigns equal weight to each class, while Micro-average assigns equal weight
to each sample. If the dataset is perfectly balanced, both Macro and Micro averages yield the
same result. In this work, the performance of all attack classes in the two multi-class datasets
under analysis will be evaluated. Hence, the contribution of each class’s performance value
is equally important compared to the others. In the upcoming sections, balanced datasets
will be used, eliminating any distinction between Macro and Micro indices. The following
metrics will be employed as indicators of multi-class performance: M-Sensitivity (M-SE),
M-Specificity (M-SP), M-Precision (M-PR), and M-Accuracy (M-AC). The “M” prefix indicates
the term Mean, encompassing both Micro and Macro without distinction (see Figure 2).

—_—
)
=

(b)

OCO® 0OO0OQ
OO0 OO0
0O 00O

OO0 ®®O0
X¥O OO0
RRXIXO OO0

—_—
)
<
—
(=}
=

Predicted Class

Figure 2. Graphical interpretation of the definition of True-Positive (a), False-Positive (b), False-
Negative (c), and True-Negative (d), referring to class 1 out of 3.

Appl. Sci. 2023,13, 7507

21 of 34

5. Dataset Manipulation

In machine learning, it is essential to preprocess the data to enhance the performance
of classification methods. Raw data in datasets often cannot be directly used by all machine
learning techniques. Therefore, it becomes necessary to manipulate the datasets through
various operations to ensure proper interpretation by the machine learning algorithms.
In the context of this work, focusing on the three datasets used, three fundamental steps
are crucial to ensure the correct execution of the learning phase [53].

5.1. Variable Encoding

For many machine learning algorithms, it is necessary to convert the data into a
numerical form, specifically quantitative values. In the literature, various methods have
been proposed to achieve this, but two widely used methodologies stand out. One of
these methodologies is “one-hot encoding”, which involves creating dummy variables
to represent categorical variables. A categorical variable with K levels (i.e., having a set
of K possible values) is transformed into an array of K binary variables, where only one
variable is active (set to 1) at a time. While there are more efficient encoding techniques
available, one-hot encoding has the advantage of preserving all the characteristics of the
dataset. However, a drawback of one-hot encoding is that it can significantly increase the
dataset size, depending on the number of values the variable can take. This can impact
computational resources and memory requirements [55-57]. Figure 3 provides an example
illustrating the one-hot encoding method.

obs | feat. m obs | red green blue
obsl |red obs1 0

1 0
obs2 | green obs2 | O 1 0
obs3 | blue obs3 [O 0 1
obs4 | green obs4 | O 1 0

Figure 3. Example of One-hot Encoding.

Another widely used method is “label encoding”. In label encoding, each unique value
in a categorical variable, denoted as set G, is assigned a numerical value ranging from 1 to
K, where K represents the total number of different values in set G. The primary advantage
of label encoding is that it does not increase the dataset size, as it simply replaces the
categorical values with corresponding numerical labels. However, one potential drawback
of this method is that it may inadvertently introduce relationships or order among the
values that were not originally present in the data [58,59]. Figure 4 provides an example
illustrating the label encoding technique.

obs | feat. w obs | feat.
obsl | red obsl 1
obs2 | green obs2 | 2
obs3 | blue obs3 3
obs4 | green obs4 | 2

Figure 4. Example of Labeled Encoding.

In this study, we have employed the “one-hot encoding” technique for the KDD 99
and UNSW-NB15 datasets, as they contain qualitative features that require encoding. This
decision was made with the aim of preserving the relationships between the features in
the original datasets, despite the increase in the overall number of features. Specifically,
the number of features expanded from 41 to 118 for the KDD 99 dataset and from 47 to

Appl. Sci. 2023,13, 7507

22 of 34

254 for the UNSW-NB15 dataset. It is important to note that the CSE-CIC-IDS 2018 dataset
does not have any qualitative features, so no encoding technique was applied to its data.

5.2. Data Scaling

In the field of machine learning, it is common practice to pre-process the data by
scaling the features to eliminate redundancy, improve stability, and aid convergence of
algorithms. In this study, all the features used underwent scaling before being utilized.
This step is essential to ensure that the features are on the same relevance level and can be
compared effectively. In the literature, various techniques exist for feature scaling, but two
main methods are commonly employed in machine learning. One of these methods is
normalization, also known as Min-Max scaling. It involves shifting and re-scaling the values
of the features so that they fall within the range of 0 to 1. This scaling technique helps to
ensure that all features have equal importance and are comparable across the same scale.

/ X — Xinin

X = _— """
Xmax - Xmin

(17)

In the Equation (17), the symbol X represents the current value of the feature, X4y
and X,,,;;, denote the maximum and minimum values of the feature column in the training
set, respectively, and X’ represents the final value of the scaled feature. Normalization
is applied when the data distribution is not assumed to follow a Gaussian distribution.
Another commonly used scaling technique is standardization, which involves centering the
values around the mean and dividing them by the standard deviation. This technique
reshapes each value within its column using a common scale without losing any information
or altering the differences in the ranges. Standardization is particularly useful when dealing
with features that exhibit a Gaussian distribution.

, X-—
X =2 F

- (18)

In the Equation (18), the symbol X denotes the current value of the feature, and
o represent the mean and standard deviation of the feature column in the training set,
respectively, and X' represents the final value of the scaled feature. Standardization
does not impose any specific range on the values, unlike normalization. It is particularly
useful when dealing with data that follows a Gaussian distribution. The decision to use
either normalization or standardization depends on the specific problem and dataset at
hand. There is no definitive rule for choosing between the two techniques. It is generally
recommended to try both approaches and compare their performance on the given task. In
this work, both normalization and standardization were applied to evaluate their suitability
for the case under examination. Ultimately, normalization was chosen because some
features in the datasets had NaN (Not a Number) values after standardization. By opting
for normalization, it was possible to retain as much information as possible from the
original datasets and avoid discarding any features during the analysis.

5.3. Dataset Balancing

An imbalanced training dataset refers to a scenario where the distribution of examples
across different classes is uneven or skewed. This can range from a slight bias to a severe
imbalance, where the majority class has a significantly larger number of examples compared
to the minority class(es). Such an imbalance poses a challenge for classification tasks
because many machine learning algorithms assume an equal number of examples for
each class, leading to poor predictive performance, particularly for the minority class.
The issue is compounded by the fact that the minority class is often more important,
and misclassification errors for this class have a higher impact on the problem at hand
than errors for the majority class [60]. In supervised machine learning methods, having
a balanced dataset during the training phase is crucial to achieve good classification

23 of 34

Appl. Sci. 2023,13, 7507

performance. Considering the specific datasets analyzed in this work, Table 7 presents

the percentage distribution of attacks for binary classification. It is evident that only the

KDD 99 dataset is balanced in terms of attack-normal observations. On the other hand,

the UNSW-NB15 and CSE-CIC-IDS 2018 datasets exhibit a significant imbalance, with a
CSE-CIC-IDS 2018

strong bias towards normal traffic observations.
Table 7. Traffic percent distribution in Binary classification.
KDD 99 UNSW-NB15
Normal Attack Normal Attack Normal Attack
54.4% 46.6% 87.4% 12.6% 83.1% 16.9%
To address the imbalance issue in the datasets (see Figure 5), a solution was imple-
mented by considering the total number of attacks as the upper limit for selecting normal
observations randomly. In the UNSW-NB15 dataset, the total number of attacks is 321,283.
Thus, the final dataset is constructed to have an equal number of attacks (321,283) and
normal observations. Similarly, in the CSE-CIC-IDS 2018 dataset, which has a total of
2,748,294 attacks, an equal number of attacks and normal observations is chosen. As a

result, two reduced datasets are obtained, where the number of normal traffic observa-
tions is lower than the original dataset, but the datasets are perfectly balanced with a

50% representation of normal observations and 50 % attacks for the training phase. The
same imbalance challenge arises in the multi-class case. However, it should be noted that

the KDD 99 dataset is excluded from the multi-class analysis as it only supports binary
classification. Tables 8 and 9 provide the percentages of each individual attack type in the

UNSW-NB15
Attacks(12.6%)

—~

UNSW-NB15 and CSE-CIC-IDS 2018 datasets, respectively, compared to the total number

of attacks.
KI-)DQS

Normal(54.4%)
Normal(87.4%)

CSE-CIC-IDS 2018
Attacks(16.9%)

.

Normal(83.1%%)

Figure 5. Proportion between Normal and Attack observations.

Appl. Sci. 2023,13, 7507

24 of 34

These tables demonstrate the existing imbalance in the datasets, which necessitates
balancing the classes for effective analysis and classification.

Table 8. Traffic percent distribution in Multi-class classification attacks in UNSW-NB15.

UNSW-NB15

Attack Type Percent
Analysis 0.83%
Backdoors 0.17%
DoS 5.10%
Exploits 13.86%
Fuzzers 7.55%
Generic 67.07%
Reconnaissance 4.35%
Shellcode 0.47%
Worms 0.05%
Total 100%

Table 9. Traffic percent distribution in Multi-class classification attacks in CSE-CIC-IDS 2018.

CSE-CIC-IDS 2018

Attack Type Percent
Bot 10.413%
Brute Force Web 0.022%
Brute Force XSS 0.008%
DDoS attack HOIC 24.961%
DDoS attack LOIC HTTP 20.965%
DDoS attack LOIC UDP 0.063%
DoS attack GoldenEye 1.510%
DoS attack Hulk 16.807%
DoS attack SlowHTTP Test 5.090%
DoS attack Slowloris 0.400%
FTP Brute Force 7.036%
Infiltration 5.891%
SQL Injection 0.003%
SSH Brute Force 6.825%
Total 100%

As observed in the UNSW-NB15 and CSE-CIC-IDS 2018 datasets, the distribution of
attacks across different categories is highly unbalanced. Some attack categories have a
very small number of observations, which is statistically insignificant for the analysis con-
ducted in this work. For instance, the “Worms” attack category in UNSW-NB15 constitutes
only 0.05% of the dataset, equivalent to 174 observations. Similarly, the “SQL Injection”
category in CSE-CIC-IDS 2018 comprises a mere 0.003% of the dataset, corresponding
to 87 observations. Having such low absolute numbers poses a challenge for machine
learning algorithms to effectively learn the distinct characteristics of these classes during
the supervised training phase. Insufficient samples hinder the algorithm’s ability to accu-
rately classify these attack categories. To address this issue, a solution was proposed to
set a lower limit threshold of 10,000 observations, ensuring an adequate number of sam-
ples for machine learning training. Attack categories with observation counts below this
threshold were removed. For the remaining attack categories, the number of observations
was set equal to the category with the lowest count above the threshold. In UNSW-NB15,

Appl. Sci. 2023,13, 7507

25 of 34

the “Reconnaissance” category has the lowest count above the threshold, which is 16,353.
Therefore, each category in the resulting training dataset contained 16,353 observations.
In CSE-CIC-IDS 2018, the “DoS attack Slowloris” category has the lowest count above the
threshold, which is 10,990. Similarly, each category in the resulting training dataset con-
sisted of 10,990 observations. Tables 10-14 provide a list of the attack categories remaining
after the balancing procedure for UNSW-NB15 and CSE-CIC-IDS 2018, respectively.

Table 10. Attack categories remained after the UNSW-NB15 dataset balancing.

UNSW-NB15
Attack Type Percent

DoS 20%

Exploits 20%

Fuzzer 20%

Generic 20%

Reconnaissance 20%

Total 100%

Table 11. Binary Classification Results.

KDD 99 UNSW-NB15 CSE-CIC-IDS 2018
SE sp PR AC SE sp PR AC SE sp PR AC

SVM 98.69% 95.60% 98.45% 97.25% 99.50% 99.22% 86.80% 99.49% 99.71% 96.72% 95.51% 97.95%
DT 99.65% 99.60% 99.60% 99.63% 99.93% 98.30% 98.0% 99.88% 99.99% 99.99% 99.99% 99.99%
RF 99.90% 99.57% 99.89% 99.75% 99.97% 99.25% 99.08% 99.95% 99.90% 99.57% 99.89% 99.75%
LDA 98.44% 95.04% 98.15% 96.85% 99.45% 99.46% 85.43% 99.45% 99.45% 99.46% 85.43% 99.45%
KNN 99.36% 98.97% 99.26% 99.18% 93.71% 99.85% 95.23% 99.65% 99.85% 93.71% 95.23% 99.65%
ANNSL 99.07% 98.72% 98.90% 98.92% 99.46% 100% 85.97% 99.48% 99.86% 99.99% 99.81% 99.92%
ANNML 9946% 99.30% 99.36% 99.39% 99.94% 99.46% 86.01% 99.45% 99.93% 100% 99.91% 99.96%

Table 12. Multi-class Classification Results.

UNSW-NB15 CSE-CIC-IDS 2018
M-SE M-SP M-PR M-AC M-SE M-SP M-PR M-AC

SVM 75.52% 93.88% 77.44% 75.52% 86.67% 98.52% 90.17% 86.68%

DT 79.74% 94.93% 82.10% 79.74% 94.99% 99.44% 96.20% 94.99%

RF 80.20% 95.05% 83.08% 80.20% 94.17% 99.35% 95.08% 94.20%

LDA 71.34% 92.83% 73.07% 71.34% 85.36% 98.37% 86.80% 85.34%

KNN 69.03% 92.26% 69.80% 69.04% 90.21% 98.92% 90.43% 90.20%

ANNML 79.85% 94.97% 82.20% 79.90% 89.62% 98.84% 91.31% 89.60%

Table 13. Computation Time in ms for 1000 observation test.

KDD 99 UNSW-NB15 CSE-CIC-IDS 2018
Binary Binary Multiclass Binary Multiclass
SVM 24.08 ms 26.70 ms 29.72 ms 44.40 ms 383.51 ms
DT 07.54 ms 10.59 ms 17.31 ms 04.44 ms 07.78 ms
RF 77.82 ms 85.67 ms 105.82 ms 80.30 ms 136.84 ms
LDA 10.48 ms 20.62 ms 33.23 ms 07.38 ms 11.30 ms
KNN 453.12 ms 2806 ms 30,902 ms 878 ms 1354 ms
ANN SL 20.74 ms 31.67 ms \ 17.25 ms \
ANN ML 40.56 ms 68.78 ms 75.39 ms 35.20 ms 54.73 ms

Appl. Sci. 2023,13, 7507

26 of 34

Table 14. Attack categories remained after CSE-CIC-IDS 2018 dataset balancing.

CSE-CIC-IDS 2018

Attack Type Percent
Bot 10%
DDoS attack HOIC 10%
DDoS attack LOIC HTTP 10%
DoS attack GoldenEye 10%
DoS attack Hulk 10%
DoS attack SlowHTTP Test 10%
DoS attack Slowloris 10%
FTP Brute Force 10%
Infiltration 10%
SSH Brute Force 10%
Total 100%

After applying the balancing procedure, the UNSW-NB15 dataset has undergone a
reduction from nine to four attack categories. The categories Analysis, Backdoors, Shellcode,
and Worm have been removed from the dataset. Similarly, in the CSE-CIC-IDS 2018 dataset,
the number of attack categories has reduced from fourteen to ten. The categories Brute Force
Web, Brute Force XSS, DDoS attack LOIC UDP, and SQL Injection have been removed. As a
result, the remaining training datasets are perfectly balanced, ensuring an equal number of
observations for each attack category.

6. Experimental Design and Results

In this section, we present the results of our analysis, where various configurations
were tested for each of the proposed methods. The selected hyper-parameters were chosen
based on their optimal performance in terms of classification accuracy and computational
efficiency. For SVM, we employed the Linear Kernel function to separate the data. This
choice was motivated by its simplicity, efficiency, and effectiveness in finding an optimal
solution for data separation. By projecting the data into a higher-dimensional space,
the linear kernel function makes it easier for the SVM to identify and separate data points,
thus enhancing classification performance. In the case of Decision Trees (DT) and Random
Forests (RF), we utilized Gini’s diversity index as the criterion for generating the trees.
Gini’s index measures the diversity of samples used in creating a decision tree. It calculates
the probability of misclassifying a randomly chosen sample when using the decision tree.
By minimizing the Gini index, we increase the diversity of the samples and reduce the
probability of incorrect classification. This makes Gini’s diversity index a valuable tool for
evaluating the performance of DT and RF algorithms in intrusion detection systems. KNN
(K-Nearest Neighbors) was configured with K-neighbors set to 5, and we employed the
Cosine Distance as the distance metric. The use of the cosine distance in KNN models for
intrusion detection systems offers several advantages. The cosine distance measures the
similarity between two vectors, making it a suitable metric for comparing the similarity
between intrusion patterns. In the case of Linear Discriminant Analysis (LDA), we utilized
the Pseudo-linear Discriminant type. This approach involves the use of the pseudo-inverse
of the covariance matrix rather than the linear covariance matrix. By employing kernel
functions to project the data into a higher-dimensional space, the separability of the data
is enhanced. Additionally, the pseudo-linear approach is computationally efficient and
capable of handling large datasets, making it ideal for intrusion detection systems that
require real-time processing of substantial amounts of data.

Additionally, our approach allowed for the incorporation of non-linear relationships
in the data, enhancing the accuracy and robustness of intrusion detection. Regarding the
Artificial Neural Network (ANN) models, we employed different architectures for binary

Appl. Sci. 2023,13, 7507

27 of 34

Results of Binary Classifiers on KDD99

and multi-class classification. In binary classification, we utilized two types of networks:
ANN Single Layer (SL) and ANN Multi-layer (ML). The number of neurons in each layer
was adjusted based on the dataset number of features. For the KDD 99 dataset, we used
ANN SL with a single hidden layer consisting of 140 neurons. The ANN ML model com-
prised five hidden layers with 140, 280, 140, 60, and 30 neurons, respectively. Both ANNs
employed the ReLU activation function, and the output layer contained 2 neurons with the
Softmax activation function. In the UNSW-NB15 dataset, we implemented two approaches
for binary classification. The first approach utilized ANN SL with a single hidden layer of
260 neurons and ReLU activation functions. The second approach involved a five-layer
ANN with 260, 520, 260, 100, and 50 neurons in each respective layer. All hidden layers
used ReLU activation functions, while the output layer consisted of 2 neurons with Soft-
max activation. For the CSE-CIC-ID 2018 dataset in binary classification, we employed
two ANN models. The first model, ANN SL, had a single hidden layer with 90 neurons.
The second model, ANN ML, comprised five hidden layers with 90, 180, 90, 45, and 20
neurons, respectively. ReLU activation functions were used in the hidden layers, and the
Softmax activation function was applied to the output layer, which contained 2 neurons.
In multi-class classification, we only utilized the ANN ML model. However, we observed
that this model lacked the capability to accurately classify the data, so the performance
results for multi-class classification are not reported. Tables 11 and 12 present a comparison
of the binary and multi-class classification performance, respectively, highlighting the best
results. The majority of the methods achieved high performance, with ANN, DT, and RF
demonstrating the best overall performance. SVM, LDA, and KNN exhibited the worst
results in both binary and multi-class cases. ANN (SL and ML) showed particularly good
specificity, indicating their effectiveness in recognizing attacks. Computation times are
reported in Table 13, calculated for 1000 observations. DT exhibited the shortest computa-
tion time, likely due to its lower complexity compared to other methods. However, all the
methods showed relatively high computation times, underscoring the need for efficient
algorithms in intrusion detection systems. The obtained results validate the applicability of
the proposed machine learning algorithms in intrusion detection systems. It is important to
note that binary classification generally outperformed multi-class classification, as binary
classification achieved precise results with low false negatives and false positives. On the
other hand, multi-class classification is more computationally demanding and complex,
leading to less effective outcomes, as observed in this study. Figures 6 and 7 provide graph-
ical representations of the results obtained from the classifiers in the binary and multi-class
cases, respectively. The tests were conducted on an Acer AN515-54 laptop featuring an
Intel(R) Core™ i7-9150H processor, running Windows 10 and MATLAB version R2021b.

Results of Binary Classifiers on UNSW-NB15 Results of Binary Classifiers on CSE-CIC-IDS 2018

‘ | | | ‘
[
PR

Figure 6. Graphical representation of binary classification results.

SE SP

AC

Appl. Sci. 2023,13, 7507

28 of 34

Results of Multi-class Classifiers on UNSW-NB15 Results of Multi-class Classifiers on CSE-CIC-IDS 2018
T T T T T e T T

100

90

SE SP PR SE SP PR AC

Figure 7. Graphical representation of the results obtained with multi-class classifiers, in the UNSW-
NB15 and CSE-CIC-IDS 2018 datest cases.

7. Final Discussion

The introduction of machine learning models and feature selection techniques has
revolutionized data analysis and opened up new perspectives for solving complex clas-
sification and regression problems. In this discussion, we will look at some of the most
popular machine learning models, such as Support Vector Machines (SVM), Decision Trees
(DT), Random Forests (RF), Linear Discriminant Analysis (LDA), K-Nearest Neighbors
(KNN) and Artificial Neural Network (AN). We will also explore some dataset manipula-
tion techniques, such as variable encoding, data scaling, and dataset balancing. Lets start
by analyzing machine learning models. The SVM is a classification model that tries to
find an optimal hyperplane to separate data into different classes. It has demonstrated
good performance in many applications, but can be computationally expensive and require
careful parameter selection. Decision Trees (DT) are intuitive models that represent a set
of decision rules organized in a tree structure. They are easy to interpret and can handle
both numerical and categorical data. However, DTs can suffer from over-fitting if their
complexity is not controlled. Random Forests (RF) are a combination of many decision
trees, working together to make a prediction. They are robust against over-fitting and can
handle a large number of features without requiring pre-selection. However, they can
require more computational resources than other models. Linear Discriminant Analysis
(LDA) is a classification technique that seeks to maximize the separation between classes
through a linear transformation of the data. LDA works best when the data is linearly
separable, but can struggle with complex or nonlinear datasets. K-Nearest Neighbors
(KNN) is a model that ranks a spot based on the labels of its closest neighbors. KNN
is simple to implement and suitable for datasets with a non-linear structure. However,
its performance can be affected by the choice of number of neighbors and the distance
used. The Artificial Neural Network (AN) is a neural network model with a single unit
of output that is trained to approximate a linear function. It can be used for classification
and regression problems. AN requires the appropriate selection and fitting of activation
functions and can be susceptible to convergence problems. Moving on to dataset manipu-
lation techniques, variable encoding is a process that converts categorical variables into
a numeric representation. This allows machine learning models to use those variables in
their analyses. However, inappropriate encoding could introduce an illusion of order or
relationship between categories. Data scaling is a common practice to bring all features
to the same scale. This can improve the convergence and performance of some machine
learning models. However, you may need to be careful if your data contains outliers,
as they may affect the final result. Dataset balancing is often necessary when target classes
are unbalanced. This involves adjusting the number of instances of each class or assigning
different weights to the classes in the training process. The balance may improve the
model’s ability to learn from minority classes, but could also introduce a risk of over-fitting.
The use of machine learning models and feature selection techniques offers a wide range

Appl. Sci. 2023,13, 7507

29 of 34

of options for data analysis. Each model and technique has its strengths and weaknesses,
which need to be carefully considered based on the specific needs of the problem and
dataset. Choosing your model and techniques carefully can lead to meaningful results and
a better understanding of the underlying data. Table 15 reports a fast summary on ML
models and their performance in the context of IDS, highlighting the most relevant article
related to the better model for each different dataset analyzed in this work.

Table 15. Summary of most relevant works.

Dataset “Best” ML Models Dataset Management Performance MROStf Relevant
eferences
DT and KNN perform
better with preliminary Comparable
KDD99 feature transformation, p_erformance with \gery
(only binary) RF, DT and KNN reduction and scaling. ~ high accuracy (>99%) [23,38,41]
RF require less and very low FPR (<0.5%)
preliminary dataset
manipulation.
Comparable
performance with very
UNSW-NBI15 RF require feature {gw%thaPCIC{ui;alcgn?arrl? e
Cobbmryand g eton ANN pefom dsseation o)
multiclass) oulati 1% Y RF pgrform bette}‘ for
manipuiation. multiclass IDS with
medium accuracy
(<85%) and low FPR
(<10/0)
Comparable
performance with very
high accuracy and very
CSE-CIC-IDS 2018 Required complete low FPR in binary
(both binary and DT, RF and KNN dataset manipulation classification. [19,41]
multiclass) Workflow. RF perform better for
multiclass IDS with

medium-high accuracy
(>90%) and low FPR
(<10/0)

8. Conclusions and Future Work

This paper demonstrates the excellent performance achieved by machine learning
(ML) models in detecting attacks, specifically in the domains of Anomaly Detection (binary
classification) and Anomaly Classification (multi-class problems). To provide a compre-
hensive and relevant analysis, the study compares the performance of these models using
three widely used datasets in the literature. The paper presents the entire operational
flow of dataset management and manipulation, highlighting the techniques employed to
optimize model performance. It discusses the advantages and disadvantages of different
approaches to dataset manipulation, feature selection, and reduction. The evaluation of
classification metrics commonly used in such problems has been performed, aiming to
provide a comprehensive comparison of the models’ performance. The results indicate
that Decision Trees (DT) and Random Forests (RF) consistently outperform other mod-
els across all selected datasets, for both binary and multi-class classification. Moreover,
the paper includes an analysis of the computational complexity, specifically computation
time, of the models. It demonstrates that DT exhibits the lowest computational burden
among the models evaluated. The scope of this research extends to the evaluation of ML
models for embedded data traffic safety applications in mechatronic systems, such as fully
electrified vehicles, complex industrial automation systems, and industrial robotic systems.
Additionally, the study explores the potential of deep learning models, highlighting their
effectiveness in various tasks. Integrating deep learning models into intrusion detection
systems has the potential to improve accuracy and handle complex data, thereby reducing
false alarms, enhancing detection rates, and enabling real-time monitoring for anomaly

Appl. Sci. 2023,13, 7507

30 of 34

detection—particularly crucial for high-traffic networks. The main objective of this review
article is to examine the state of the art of machine learning (ML) in the area of computer
network security, but it is important to emphasize that future developments in this area
will increasingly focus on applying deep learning (DL). DL offers enormous potential to
address complex and unknown challenges in detecting cyber threats and improving net-
work security. Here are some reasons why DL will be a key pillar for future development
in computer network security. One of the main challenges in the field of network security
is the processing of large amounts of data from different sources. The DL, thanks to its
deep learning capabilities, can automatically extract high-level and complex features from
the raw data. This helps identify patterns and hidden correlations that could be indicative
of malicious behavior or suspicious activity within computer networks. Cyberattacks are
becoming more sophisticated, using advanced techniques such as signature evasion and
camouflage of malicious activity. DL can address this challenge by allowing models to
automatically learn new attack patterns without the need for explicit rules. DL models
can recognize patterns of suspicious behavior even when attacks take never-before-seen
forms, making network defenses more robust and adaptable. Network security requires
analyzing massive amounts of data from various traffic streams, system logs, and other
sources. DL excels at processing large datasets, enabling rapid and simultaneous analysis
of multiple data sources. This can lead to better detection of threats and faster processing
of information, allowing you to respond quickly to cyber attacks. DL can play a crucial
role in detecting anomalous activity in computer networks. For example, DL models can
learn the normal behaviors of network devices and individual users, allowing you to detect
deviant behavior that could indicate malicious activity. This ability to spot anomalies
and unusual behavior helps identify intrusions before they cause significant damage. DL
also offers opportunities to improve the performance of existing machine learning models.
Deep neural networks can be used to further refine existing ML models, enabling more
accurate predictions and reducing the number of false positives and false negatives in
threat detections. While this article focuses on machine learning, it is clear that future devel-
opments in computer network security will increasingly require the use of deep learning.
Extracting complex features, detecting sophisticated attacks, analyzing large amounts of
data, detecting anomalous activity and improving model performance are just some of
the potential benefits offered by the DL to improve the security of computer networks.
The integration of DL into the network security space promises to provide a more robust
and resilient defense against increasingly complex and sophisticated cyberthreats [61-68].
Future developments of this research focus on the application of ML /AI models in indus-
trial mechatronics. Examples include ensuring the safety of on-board control systems in
assisted and autonomous driving vehicles, and developing advanced anomaly detection
systems for information traffic in industrial automation systems, such as drive control
systems for manipulator robots or trajectory planning systems for robots [69-82].

Author Contributions: Authors has equally contributed at this article. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is partially funded by the Horizon Europe program under grant agreement
101092850 (AERO project) and by the European High-Performance Computing Joint Undertaking
(JU) program under grant agreement 101033975 (EUPEX).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023,13, 7507 31 of 34

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Musa, U.S.; Chhabra, M.; Ali, A.; Kaur, M. Intrusion Detection System using Machine Learning Techniques: A Review. In Proceed-
ings of the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 10-12 September 2020;
pp- 149-155.

Aljabri, M.; Altamimi, H.S.; Albelali, S.A.; Maimunah, A.H.; Alhuraib, H.T.; Alotaibi, N.K.; Alahmadi, A.A.; Alhaidari, F,;
Mohammad, R.M.A ; Salah, K. Detecting malicious URLs using machine learning techniques: Review and research directions.
IEEE Access 2022, 10, 121395-121417. [CrossRef]

Okey, O.D.; Maidin, S.S.; Adasme, P.; Lopes Rosa, R.; Saadi, M.; Carrillo Melgarejo, D.; Zegarra Rodriguez, D. BoostedEnML:
Efficient technique for detecting cyberattacks in IoT systems using boosted ensemble machine learning. Sensors 2022, 22, 7409.
[CrossRef] [PubMed]

Htun, H.H.; Biehl, M.; Petkov, N. Survey of feature selection and extraction techniques for stock market prediction. Financ. Innov.
2023, 9, 26. [CrossRef] [PubMed]

Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita,] K. Network Traffic Anomaly Detection and Prevention: Concepts, Techniques, and Tools;
Springer: Berlin/Heidelberg, Germany, 2017.

Liu, J.; Dong, Y.; Zha, L,; Tian, E.; Xie, X. Event-based security tracking control for networked control systems against stochastic
cyber-attacks. Inf. Sci. 2022, 612, 306-321. [CrossRef]

Zha, L.; Liao, R;; Liu, J.; Xie, X;; Tian, E.; Cao,]. Dynamic event-triggered output feedback control for networked systems subject
to multiple cyber attacks. IEEE Trans. Cybern. 2021, 52, 13800-13808. [CrossRef] [PubMed]

Qu, F; Tian, E.; Zhao, X. Chance-Constrained H-infinity State Estimation for Recursive Neural Networks Under Deception
Attacks and Energy Constraints: The Finite-Horizon Case. IEEE Trans. Neural Netw. Learn. Syst. 2022. [CrossRef]

Chen, H.; Jiang, B.; Ding, S.X.; Huang, B. Data-driven fault diagnosis for traction systems in high-speed trains: A survey,
challenges, and perspectives. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1700-1716. [CrossRef]

Elhanashi, A.; Lowe Sr, D.; Saponara, S.; Moshfeghi, Y. Deep learning techniques to identify and classify COVID-19 abnormalities
on chest X-ray images. In Proceedings of the Real-Time Image Processing and Deep Learning 2022; SPIE: Bellingham, WA, USA, 2022;
Volume 12102, pp. 15-24.

Zheng, Q.; Zhao, P.; Wang, H.; Elhanashi, A.; Saponara, S. Fine-grained modulation classification using multi-scale radio
transformer with dual-channel representation. IEEE Commun. Lett. 2022, 26, 1298-1302. [CrossRef]

Elhanashi, A.; Gasmi, K.; Begni, A.; Dini, P.; Zheng, Q.; Saponara, S. Machine Learning Techniques for Anomaly-Based Detection
System on CSE-CIC-IDS2018 Dataset. In Applications in Electronics Pervading Industry, Environment and Society: APPLEPIES 2022;
Springer: Berlin/Heidelberg, Germany, 2023; pp. 131-140.

Pisner, D.A.; Schnyer, DM. Support vector machine. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020;
pp. 101-121.

Widodo, A.; Yang, B.S. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process.
2007, 21, 2560-2574. [CrossRef]

Pervez, M.S.; Farid, D.M. Feature selection and intrusion classification in NSL-KDD cup 99 dataset employing SVMs. In
Proceedings of the 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA
2014), Dhaka, Bangladesh, 18-20 December 2014; pp. 1-6.

Al Mehedi Hasan, M.; Nasser, M.; Pal, B. On the KDD’99 dataset: Support vector machine based intrusion detection system (ids)
with different kernels. Int. J. Electron. Commun. Comput. Eng 2013, 4, 1164-1170.

Jing, D.; Chen, H.B. SVM based network intrusion detection for the UNSW-NB15 dataset. In Proceedings of the 2019 IEEE 13th
international conference on ASIC (ASICON), Chongqing, China, 29 October—1 November 2019; pp. 1-4.

Kasongo, S.M.; Sun, Y. Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15
dataset. J. Big Data 2020, 7, 1-20. [CrossRef]

Kanimozhi, V.; Jacob, T.P. Calibration of various optimized machine learning classifiers in network intrusion detection system on
the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing. Int. |. Eng. Appl. Sci. Technol. 2019, 4, 209-213. [CrossRef]
Liu, L.; Wang, P; Lin, J.; Liu, L. Intrusion detection of imbalanced network traffic based on machine learning and deep learning.
IEEE Access 2020, 9, 7550-7563. [CrossRef]

Raj, A. An Exhaustive Guide to Decision Tree Classification in Python 3.x. 2021. Available online: https://towardsdatascience.
com/an-exhaustive-guide-to-classification-using-decision-trees-8d472e77223f (accessed on 30 January 2023).

Patel Brijain, R.; Rana, K.K. A Survey on Decision Tree Algorithm for Classification. Int. J. Eng. Dev. Res. 2014, 2, 1-5.

Lee,].H,; Lee,].H.; Sohn, S.G.; Ryu, J.H.; Chung, T.M. Effective value of decision tree with KDD 99 intrusion detection datasets for
intrusion detection system. In Proceedings of the 2008 10th International Conference on Advanced Communication Technology,
Gangwon, Republic of Korea, 17-20 February 2008; Volume 2, pp. 1170-1175.

Amor, N.B.; Benferhat, S.; Elouedi, Z. Naive bayes vs decision trees in intrusion detection systems. In Proceedings of the 2004
ACM Symposium on Applied Computing, Nicosia, Cyprus, 14-17 March 2004; pp. 420-424.

Bagui, S.; Kalaimannan, E.; Bagui, S.; Nandi, D.; Pinto, A. Using machine learning techniques to identify rare cyber-attacks on the
UNSW-NBI15 dataset. Secur. Priv. 2019, 2, €91.

Zuech, R.; Hancock, J.; Khoshgoftaar, T.M. Detecting web attacks using random undersampling and ensemble learners. J. Big
Data 2021, 8, 75. [CrossRef]

http://doi.org/10.1109/ACCESS.2022.3222307
http://dx.doi.org/10.3390/s22197409
http://www.ncbi.nlm.nih.gov/pubmed/36236506
http://dx.doi.org/10.1186/s40854-022-00441-7
http://www.ncbi.nlm.nih.gov/pubmed/36687795
http://dx.doi.org/10.1016/j.ins.2022.08.085
http://dx.doi.org/10.1109/TCYB.2021.3125851
http://www.ncbi.nlm.nih.gov/pubmed/34797773
http://dx.doi.org/10.1109/TNNLS.2021.3137426
http://dx.doi.org/10.1109/TITS.2020.3029946
http://dx.doi.org/10.1109/LCOMM.2022.3145647
http://dx.doi.org/10.1016/j.ymssp.2006.12.007
http://dx.doi.org/10.1186/s40537-020-00379-6
http://dx.doi.org/10.33564/IJEAST.2019.v04i06.036
http://dx.doi.org/10.1109/ACCESS.2020.3048198
https://towardsdatascience.com/an-exhaustive-guide-to-classification-using-decision-trees-8d472e77223f
https://towardsdatascience.com/an-exhaustive-guide-to-classification-using-decision-trees-8d472e77223f
http://dx.doi.org/10.1186/s40537-021-00460-8

Appl. Sci. 2023,13, 7507 32 of 34

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

Education, I.C. Random Forest. 2020. Available online: https://www.ibm.com/cloud/learn/random-forest (accessed on
30 January 2023).

Hasan, M.A.M.; Nasser, M.; Ahmad, S.; Molla, K.I. Feature Selection for Intrusion Detection Using Random Forest. |. Inf. Secur.
2016, 7, 129-140. [CrossRef]

Pal, M.M.B.; Ahmad, S. Support Vector Machine and Random Forest Modeling for Intrusion Detection System (IDS). J. Intell.
Learn. Syst. Appl. 2014, 6, 42869.

Hassine, K.; Erbad, A.; Hamila, R. Important complexity reduction of random forest in multi-classification problem. In
Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier,
Morocco, 24-28 June 2019; pp. 226-231.

Primartha, R.; Tama, B.A. Anomaly detection using random forest: A performance revisited. In Proceedings of the 2017
International Conference on Data and Software Engineering (ICoDSE), Palembang, Indonesia, 1-2 November 2017; pp. 1-6.
Mishra, S.; Datta-Gupta, A. Chapter 5—Multivariate Data Analysis. In Applied Statistical Modeling and Data Analytics; Mishra, S.,
Datta-Gupta, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 97-118. [CrossRef]

Adams, M. CHEMOMETRICS AND STATISTICS | Multivariate Classification Techniques. In Encyclopedia of Analytical Science,
2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; pp. 21-27. [CrossRef]

Sathya, S.S.; Ramani, R.G.; Sivaselvi, K. Discriminant analysis based feature selection in kdd intrusion dataset. Int. J. Comput.
Appl. 2011, 31, 1-7.

Katos, V. Network intrusion detection: Evaluating cluster, discriminant, and logit analysis. Inf. Sci. 2007, 177, 3060-3073.
[CrossRef]

Solani, S.; Jadav, N.K. A Novel Approach to Reduce False-Negative Alarm Rate in Network-Based Intrusion Detection System
Using Linear Discriminant Analysis. In Inventive Communication and Computational Technologies; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 911-921.

Karatas, G.; Demir, O.; Sahingoz, O.K. Increasing the performance of machine learning-based IDSs on an imbalanced and
up-to-date dataset. JEEE Access 2020, 8, 32150-32162. [CrossRef]

Benaddi, H.; Ibrahimi, K.; Benslimane, A. Improving the Intrusion Detection System for NSL-KDD Dataset based on PCA-Fuzzy
Clustering-KNN. In Proceedings of the 2018 6th International Conference on Wireless Networks and Mobile Communications
(WINCOM), Marrakesh, Morocco, 16-19 October 2018; pp. 1-6. [CrossRef]

Kuang, L.; Zulkernine, M. An anomaly intrusion detection method using the CSI-KNN algorithm. In Proceedings of the 2008
ACM Symposium on Applied Computing, Ceara, Brazil, 16-20 March 2008; pp. 921-926.

Kocher, G.; Kumar, G. Performance Analysis of Machine Learning Classifiers for Intrusion Detection Using Unsw-Nb15 Dataset.
Comput. Sci. Inf. Technol. (CSIT) 2020, 10, 31-40.

Dini, P.; Saponara, S. Analysis, design, and comparison of machine-learning techniques for networking intrusion detection.
Designs 2021, 5, 9. [CrossRef]

Leevy,].L.; Khoshgoftaar, T.M. A survey and analysis of intrusion detection models based on cse-cic-ids2018 big data. . Big Data
2020, 7, 1-19. [CrossRef]

Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85-117. [CrossRef] [PubMed]
Al-Janabi, S.T.F; Saeed, H.A. A Neural Network Based Anomaly Intrusion Detection System. In Proceedings of the 2011
Developments in E-Systems Engineering, Dubai, United Arab Emirates, 6-8 December 2011; pp. 221-226. [CrossRef]

Jia, Y.; Wang, M.; Wang, Y. Network intrusion detection algorithm based on deep neural network. IET Inf. Secur. 2019, 13, 48-53.
[CrossRef]

Hanif, S.; Ilyas, T.; Zeeshan, M. Intrusion Detection In IoT Using Artificial Neural Networks On UNSW-15 Dataset. In Proceedings
of the 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT IoT and AI (HONET-ICT),
Charlotte, NC, USA, 6-9 October 2019; pp. 152-156. [CrossRef]

Rajagopal, S.; Hareesha, K.S.; Kundapur, P.P. Feature relevance analysis and feature reduction of UNSW NB-15 using neural
networks on MAMLS. In Advanced Computing and Intelligent Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 321-332.
Kim, J.; Shin, Y.; Choi, E. An intrusion detection model based on a convolutional neural network. J. Multimed. Inf. Syst. 2019,
6,165-172. [CrossRef]

Kanimozhi, V.; Jacob, T.P. Artificial Intelligence based Network Intrusion Detection with Hyper-Parameter Optimization Tuning
on the Realistic Cyber Dataset CSE-CIC-IDS2018 using Cloud Computing. In Proceedings of the 2019 International Conference
on Communication and Signal Processing (ICCSP), Chennai, India, 4-6 April 2019; pp. 33-36. [CrossRef]

Moustafa, N.; Slay,]. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT,
Australia, 10-12 November 2015; pp. 1-6.

University of New Brunswick, Canadian Institute for Cybersecurity. CSE-CIC-IDS2018 on AWS. 2021. Available online:
https:/ /www.unb.ca/cic/datasets/ids-2018.html (accessed on 30 January 2023).

Grandini, M.; Bagli, E.; Visani, G. Metrics for multi-class classification: An overview. arXiv 2020, arXiv:2008.05756.

Dini, P,; Begni, A.; Ciavarella, S.; De Paoli, E.; Fiorelli, G.; Silvestro, C.; Saponara, S. Design and Testing Novel One-Class Classifier
Based on Polynomial Interpolation With Application to Networking Security. IEEE Access 2022, 10, 67910-67924. [CrossRef]

https://www.ibm.com/cloud/learn/random-forest
http://dx.doi.org/10.4236/jis.2016.73009
http://dx.doi.org/10.1016/B978-0-12-803279-4.00005-5
http://dx.doi.org/10.1016/B0-12-369397-7/00076-5
http://dx.doi.org/10.1016/j.ins.2007.02.034
http://dx.doi.org/10.1109/ACCESS.2020.2973219
http://dx.doi.org/10.1109/WINCOM.2018.8629718
http://dx.doi.org/10.3390/designs5010009
http://dx.doi.org/10.1186/s40537-020-00382-x
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.1109/DeSE.2011.19
http://dx.doi.org/10.1049/iet-ifs.2018.5258
http://dx.doi.org/10.1109/HONET.2019.8908122
http://dx.doi.org/10.33851/JMIS.2019.6.4.165
http://dx.doi.org/10.1109/ICCSP.2019.8698029
https://www.unb.ca/cic/datasets/ids-2018.html
http://dx.doi.org/10.1109/ACCESS.2022.3186026

Appl. Sci. 2023,13, 7507 33 of 34

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Scikit-Learn Developers. Metrics and Scoring: Quantifying the Quality of Predictions. 2022. Available online: https:/ /scikit-
learn.org/stable/modules/model_evaluation. html#metrics-and-scoring-quantifying-the-quality-of-predictions (accessed on
30 January 2023).

Devarakonda, A.; Sharma, N.; Saha, P.; Ramya, S. Network intrusion detection: A comparative study of four classifiers using the
NSL-KDD and KDD’99 datasets. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2022; Volume 2161, p. 012043.
Jie, L.; Jiahao, C.; Xueqin, Z.; Yue, Z.; Jiajun, L. One-hot encoding and convolutional neural network based anomaly detection.
J. Tsinghua Univ. Sci. Technol. 2019, 59, 523-529.

Moualla, S.; Khorzom, K.; Jafar, A. Improving the performance of machine learning-based network intrusion detection systems
on the UNSW-NB15 dataset. Comput. Intell. Neurosci. 2021, 2021, 5557577. [CrossRef]

Roy, A.; Singh, K.J. Multi-classification of UNSW-NB15 dataset for network anomaly detection system. In Proceedings of the
International Conference on Communication and Computational Technologies; Springer: Singapore, 2021; pp. 429-451.

Kannari, PR.; Shariff, N.C.; Biradar, R.L. Network intrusion detection using sparse autoencoder with swish-PReLU activation
model. |. Ambient. Intell. Humaniz. Comput. 2021, 1-13. [CrossRef]

Brownlee, J. A gentle introduction to imbalanced classification. Mach. Learn. Mastery 2019, 22 . Available online: https:
/ /machinelearningmastery.com/what-is-imbalanced-classification/ (accessed on 30 January 2023).

Lopez-Martin, M.; Sanchez-Esguevillas, A.; Arribas, J.I.; Carro, B. Contrastive Learning Over Random Fourier Features for IoT
Network Intrusion Detection. IEEE Internet Things J. 2023, 10, 8505-8513. [CrossRef]

Lopez-Martin, M.; Sanchez-Esguevillas, A.; Arribas, J.I.; Carro, B. Network Intrusion Detection Based on Extended RBF Neural
Network With Offline Reinforcement Learning. IEEE Access 2021, 9, 153153-153170. [CrossRef]

Lopez-Martin, M.; Sanchez-Esguevillas, A.; Arribas, J.I.; Carro, B. Supervised contrastive learning over prototype-label embed-
dings for network intrusion detection. Inf. Fusion 2022, 79, 200-228. [CrossRef]

Lopez-Martin, M.; Carro, B.; Arribas, J.I.; Sanchez-Esguevillas, A. Network intrusion detection with a novel hierarchy of distances
between embeddings of hash IP addresses. Knowl.-Based Syst. 2021, 219, 106887. [CrossRef]

Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Application of deep reinforcement learning to intrusion detection for
supervised problems. Expert Syst. Appl. 2020, 141, 112963. [CrossRef]

Caminero, G.; Lopez-Martin, M.; Carro, B. Adversarial environment reinforcement learning algorithm for intrusion detection.
Comput. Netw. 2019, 159, 96-109. [CrossRef]

Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Variational data generative model for intrusion detection. Knowl. Inf. Syst.
2019, 60, 569-590. [CrossRef]

Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret,]. Conditional variational autoencoder for prediction and feature
recovery applied to intrusion detection in iot. Sensors 2017, 17, 1967. [CrossRef]

Benedetti, D.; Agnelli, J.; Gagliardi, A.; Dini, P.; Saponara, S. Design of a digital dashboard on low-cost embedded platform in a
fully electric vehicle. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and
2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9-12 June 2020; pp. 1-5.
Dini, P.; Saponara, S. Processor-in-the-loop validation of a gradient descent-based model predictive control for assisted driving
and obstacles avoidance applications. IEEE Access 2022, 10, 67958-67975. [CrossRef]

Dini, P.; Saponara, S. Model-Based Design of an Improved Electric Drive Controller for High-Precision Applications Based on
Feedback Linearization Technique. Electronics 2021, 10, 2954. [CrossRef]

Cosimi, F; Dini, P; Giannetti, S.; Petrelli, M.; Saponara, S. Analysis and design of a non-linear MPC algorithm for vehicle
trajectory tracking and obstacle avoidance. In Proceedings of the Applications in Electronics Pervading Industry, Environment and
Society: APPLEPIES 2020 8; Springer: Berlin/Heidelberg, Germany, 2021; pp. 229-234.

Bernardeschi, C.; Dini, P.; Domenici, A.; Mouhagir, A.; Palmieri, M.; Saponara, S.; Sassolas, T.; Zaourar, L. Co-simulation of a
Model Predictive Control System for Automotive Applications. In Software Engineering and Formal Methods, Proceedings of the
SEFM 2021 Collocated Workshops: CIFMA, CoSim-CPS, OpenCERT, ASYDE, Virtual Event, 6-10 December 2021; Revised Selected
Papers; Springer: Berlin/Heidelberg, Germany, 2022; pp. 204-220.

Begni, A.; Dini, P.; Saponara, S. Design and Test of an LSTM-Based Algorithm for Li-Ion Batteries Remaining Useful Life Estimation.
In Applications in Electronics Pervading Industry, Environment and Society: APPLEPIES 2022; Springer: Berlin/Heidelberg, Germany,
2023; pp. 373-379.

Bernardeschi, C.; Dini, P.; Domenici, A.; Palmieri, M.; Saponara, S. Do-it-Yourself FMU Generation. In Software Engineering and
Formal Methods, Proceedings of the SEFM 2022 Collocated Workshops: AI4EA, F-IDE, CoSim-CPS, CIFMA, Berlin, Germany, 26-30
September 2022; Revised Selected Papers; Springer: Berlin/Heidelberg, Germany, 2023; pp. 210-227.

Dini, P; Saponara, S. Cogging torque reduction in brushless motors by a nonlinear control technique. Energies 2019, 12, 2224.
[CrossRef]

Dini, P; Saponara, S. Electro-thermal model-based design of bidirectional on-board chargers in hybrid and full electric vehicles.
Electronics 2022, 11, 112. [CrossRef]

Dini, P; Saponara, S. Design of adaptive controller exploiting learning concepts applied to a BLDC-based drive system. Energies
2020, 13, 2512. [CrossRef]

Dini, P; Saponara, S. Design of an observer-based architecture and non-linear control algorithm for cogging torque reduction in
synchronous motors. Energies 2020, 13, 2077. [CrossRef]

https://scikit-learn.org/stable/modules/model_evaluation.html#metrics-and-scoring-quantifying-the-quality-of-predictions
https://scikit-learn.org/stable/modules/model_evaluation.html#metrics-and-scoring-quantifying-the-quality-of-predictions
http://dx.doi.org/10.1155/2021/5557577
http://dx.doi.org/10.1007/s12652-021-03077-0
https://machinelearningmastery.com/what-is-imbalanced-classification/
https://machinelearningmastery.com/what-is-imbalanced-classification/
http://dx.doi.org/10.1109/JIOT.2022.3214758
http://dx.doi.org/10.1109/ACCESS.2021.3127689
http://dx.doi.org/10.1016/j.inffus.2021.09.014
http://dx.doi.org/10.1016/j.knosys.2021.106887
http://dx.doi.org/10.1016/j.eswa.2019.112963
http://dx.doi.org/10.1016/j.comnet.2019.05.013
http://dx.doi.org/10.1007/s10115-018-1306-7
http://dx.doi.org/10.3390/s17091967
http://dx.doi.org/10.1109/ACCESS.2022.3186020
http://dx.doi.org/10.3390/electronics10232954
http://dx.doi.org/10.3390/en12112224
http://dx.doi.org/10.3390/electronics11010112
http://dx.doi.org/10.3390/en13102512
http://dx.doi.org/10.3390/en13082077

Appl. Sci. 2023,13, 7507 34 of 34

80. Benedetti, D.; Agnelli, J.; Gagliardi, A.; Dini, P; Saponara, S. Design of an Off-Grid Photovoltaic Carport for a Full Electric Vehicle
Recharging. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE
Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9-12 June 2020; pp. 1-6. [CrossRef]

81. Bernardeschi, C.; Dini, P.; Domenici, A.; Palmieri, M.; Saponara, S. Formal verification and co-simulation in the design of a
synchronous motor control algorithm. Energies 2020, 13, 4057. [CrossRef]

82. Dini, P; Ariaudo, G.; Botto, G.; Greca, FL.; Saponara, S. Real-time electro-thermal modelling & predictive control design of
resonant power converter in full electric vehicle applications. IET Power Electron. 2023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160655
http://dx.doi.org/10.3390/en13164057
http://dx.doi.org/10.1049/pel2.12527

	Introduction
	Overview
	Motivations
	Machine Learning in Network Security
	Contribution

	Related Works
	Support Vector Machine
	Decision Tree
	Random Forest
	Linear Discriminant Analysis
	K-Nearest Neighbors
	Artificial Neural Network

	Selected Datasets
	KDD 99
	UNSW-NB15
	CSE-CIC-IDS 2018

	ML Performance Evaluation
	Binary Classification Metric
	Multi-Class Classification Metric

	Dataset Manipulation
	Variable Encoding
	Data Scaling
	Dataset Balancing

	Experimental Design and Results
	Final Discussion
	Conclusions and Future Work
	References

