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ABSTRACT
With the proliferation of Serverless Computing, the Function-as-
a-Service (FaaS) paradigm is nowadays ubiquitous. As a result,
the domain has attracted extensive research, both in industry and
academia, identifying opportunities and addressing limitations
across all aspects of this new Cloud paradigm. Recently, FaaS
providers have released production workload traces of their com-
mercial platforms. These expose important characteristics, such
as the execution time of function invocations, their number and
the distribution of their inter-arrival times, which must be taken
into account for a concrete evaluation of innovative solutions. Nev-
ertheless, the Serverless ecosystem still lacks a unified evaluation
methodology based on such information.

In this paper we attempt to fill this gap, by developing a method-
ology for fitting existing, real, open-source workloads found in
FaaS benchmarking suites to production FaaS workload traces, in a
way that sufficiently preserves the aforementioned core statistical
properties of such traces. Based on this, we build FaaSRail, an open-
source load generator that receives a target maximum request rate
and a target total execution duration as inputs from the user and
generates representative, scaled down FaaS load.
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1 INTRODUCTION
Serverless computing is nowadays supported by all major cloud
providers [1–6] and its adoption is on the rise [7] as this new pro-
gramming and deployment paradigm approachesmaturity. Function-
as-a-Service (FaaS) allows users to upload their application code
split into multiple stateless execution units (functions) that are
scheduled upon certain events (e.g., HTTP requests). In turn, cloud
providers (i) execute the user-defined functions inside secure sand-
boxes (e.g., containers and/or microVMs [8]), (ii) transparently auto-
scale the compute and memory resources to meet request load,
and (iii) bill users in a fine-grained pay-as-you-go manner [1–6].
This model relieves users from the burden of handling infrastruc-
ture and provides cloud vendors with a unique opportunity to au-
tonomously scale hardware resources and hence reassess resource
over-provisioning [9].

However, providers face numerous challenges with respect to
resource allocation [7, 9–16], scheduling, load balancing [12, 15, 17–
23] and execution overheads across the stack [8, 16, 24–38] when
they deploy serverless functions in their clusters. For instance, the
short execution times of functions make them very sensitive to
instantiation overheads (cold starts), hence providers keep them
cached even when idling, effectively wasting memory [14, 39–41].
A long line of recent research targets these challenges and its wide
scope underlines the necessity for a unified representative methodol-
ogy for FaaS experimentation. In more detail, designing innovative
solutions across the FaaS stack requires: (i) open-source platforms
for FaaS deployment in small-scale local clusters, (ii) representa-
tive workloads for benchmarking, and (iii) request generators for
representative load. To that end, open-source FaaS platforms (e.g.,
vHive [31], OpenWhisk [42], etc.) and benchmarking suites (e.g.,
FunctionBench [43, 44], ServerlessBench [45], etc.) have been re-
leased, but the generation of representative load remains an open
challenge.

FaaS providers have released workload traces of their commercial
platforms [39, 40], which outline the load on huge production clusters.
They provide per-function information, such as execution runtimes,
memory usage, and invocation request inter-arrival times. These
traces expose several unique characteristics of FaaS, like sub-second
execution durations and bursty request patterns, and effectively con-
stitute the only available guide for representative load generation.
Although the knowledge of the state of production-scale clusters is
indispensable, this information cannot be easily utilized for research
purposes, due to two main reasons. First, these traces are massive,
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as they report statistics for tens of thousands of functions that are
triggered billions of times and deployed on hundreds of nodes over
several days. Second, the actual code and/or executable binaries of
those functions are not provided due to anonymity reasons [39],
making it essentially impossible to reproduce them.

To facilitate research on the FaaS stack, it is necessary to come
up with easily reproducible and configurable workloads, which
at the same time are representative of the production-level traces.
Currently, most of the common practices to generate load for FaaS
platforms scale down the number of functions and requests in a way
that fails to preserve the core statistical properties of the available
trace.Multipleworks isolate trends present in the traces and emulate
them synthetically [10, 12–15, 17, 18, 20, 26–28, 31, 32, 38, 46–48].
For instance, several works [10, 12–15, 17, 18, 20, 26, 28, 46, 47]
generate requests for a subset of real workloads employing Poisson
processes to emulate the burstiness of invocation request arrivals
reported in production traces. However, as we show, this strategy
violates other properties, such as the distribution of the invocation
runtimes and the popularity of functions. Furthermore, it fails to
capture both the per-function and the aggregated request load
which usually varies, as reported in the trace.

On the other hand, multiple works use data directly from the
industry traces [11, 15, 16, 20, 21, 23, 28, 29, 34–36, 47]. Typically,
they scale down the experiment by randomly sampling the trace
to collect a subset of the reported functions [11, 16, 23, 34–36, 48].
Subsequently, they map them to real workloads and generate re-
quests using their reported inter-arrival times. However, as we
show, random sampling can also violate statistical properties and
in addition, it can lead to inconsistent experimentation [49].

Using partially representative load can potentially lead to in-
complete conclusions or limit research. For example, a load that
emulates bursty request rates but neglects the skewed popularity
of FaaS functions, may mislead research on resource allocation and
load balancing. Moreover, a load that follows non-representative
skewed runtime distributions and, as a result, comprises mostly
FaaS functions with sub-second execution durations, can overes-
timate the cold-start overheads of a realistic load and lead biased
research on function caching.

Finally, a long line of research does not use real workloads
at all and generates noop pseudo-functions (e.g., busy loops) in-
stead [18, 19, 34, 48, 49]. This enables the fabrication of a larger
number of functions, compared to the number of available work-
loads, with artificially varying execution durations. A combination
with any request generator described above allows for a better ap-
proach of the execution time distributions reported in the traces.
It is favored for cluster-level scheduling research [18, 19] and gen-
erally system simulation [34]. However, as FaaS research matures,
the workload characteristics that go beyond average runtimes and
memory utilisation, such as memory access patterns, I/O and CPU
activity, input data etc., are leveraged across the stack, even at the
cluster-level, to make decisions [10, 21, 22, 38]. Such characteristics
are harder to realistically synthesize, which culminates the impor-
tance of real workloads in Serverless research, as well as the lack
thereof.

In general, the Serverless ecosystem lacks a unified evaluation
methodology and an established set of tools capable of generating
real workload on research platforms of any scale, while preserving

the characteristics unveiled by production FaaS traces. To address
this gap, we first study the requirements of existing FaaS research
areas and identify the following critical trace properties: (i) the
distribution of execution durations of workloads and invocations,
(ii) the skewed popularity of the workloads, and (iii) the varying
load of requests. Moreover, we consider important the use of real
workloads to generate FaaS load.

We develop FaaSRail, a tool that fits existing open-source work-
loads to production FaaS workload traces. FaaSRail’s methodology
includes: (i) reducing the number of functions in a trace in a statis-
tically safe manner, with care not to brush off particular attributes
which effectively shape the peculiarities of production FaaS deploy-
ment; (ii) mapping the functions of a real, industrial trace to realistic
workloads found in open-source benchmarking suites, after aug-
menting them without distorting the execution characteristics of
the original trace; (iii) downscaling the number of invocations per
function, as reported in production traces, while retaining their
function popularity; (iv) downsampling production traces over time,
to accurately emulate their diurnal load variations in reasonable
total duration; (v) emulating sub-minute invocation request bursti-
ness, while preserving both the overall and the per-function invo-
cation rate trends of production traces. FaaSRail is implemented as
two open-source1 components: (i) the offline “shrink ray”, which ap-
propriately downscales and matches both the benchmarking suites
and the production traces to generate experiment specifications,
and (ii) the high-performant, versatile load generator that can fur-
ther parameterize and replay such specifications against a backend
FaaS system.

In summary, this paper makes the following contributions:
• The FaaSRail methodology and open-source utilities to generate
replayable traces of requests for real FaaS workloads with similar
core statistical properties as the industrial traces.

• An extensive evaluation of FaaSRail-generated traces against the
Azure and Huawei traces.

2 MOTIVATION
In this section we discuss the available traces of commercial server-
less platforms and break down some of their key statistical prop-
erties that drive FaaS research. We then identify the challenges of
leveraging these traces to generate load for FaaS experimentation
and study the approaches of prior works to the problem at hand. We
use our observations as motivation and guide to design FaaSRail.

2.1 Industry traces
BothMicrosoft Azure [39] andHuawei [40] have released production-
scale traces related to their FaaS deployments in the Cloud. There-
fore, they effectively act as the main interface between industry
and academia to drive related research.

The workload trace of Azure Functions reports statistics from
the deployment of 80K functions recorded in a 14-days window.
The statistics contain, among others, the average warm execution
time for each function, as well as its total number of invocations,
along with their distribution among the 1440 minutes of each day.
Moreover, the trace reports the allocated and resident memory per

1Source code is available at https://github.com/cslab-ntua/faasrail.

https://github.com/cslab-ntua/faasrail
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(a) Functions’ average execution durations (b) Invocations’ average execution durations

(c) Functions’ popularity (d) Load over time (aggregated invocation rates)
Figure 1: Load generation for serverless research. A common practice is to emulate some of the public traces’ key statistical properties, such
as bursty invocation request rates (Figure 1d), by generating the series of requests over time using some well known mathematical model
(typically the Poisson process). Nevertheless, if not used appropriately, such approaches can regularly allow violations of other key statistical
properties (Figures 1b, 1a).

application (i.e., group of functions). The trace has shed some light
on several particularly interesting facts, such as:

(i) a large number of functions are very short-running; 50% of the
functions execute for less than 1s;

(ii) the popularity of functions is extremely skewed; 99% of all invo-
cations during the first day refer to merely 8% of all functions;

(iii) the most popular functions have short execution durations
which leads to short runtimes dominating invocations; 80% of
all invocations actually run for less than 1s;

(iv) the request rates per function are bursty, i.e., sudden spikes in
requests per minute followed by idle time.

In general though, despite the aforementioned observed trends,
the trace manifests huge overall variability, across all aspects of
function behavior. For instance, a small portion of the functions are
invoked thousands of times per minute, but 90% of the functions
are invoked once per minute or less. Furthermore, the reported
function execution times vary by 2 to 4 orders of magnitude. This
diversity underlines the importance of taking into consideration entire
distributions to capture FaaS behavior, rather than merely average
values which might be skewed. For example, it would not be safe
to overlook groups of functions based on their longer runtimes or
longer idle times, as they can represent a significant portion of the
total functions.

More recently, Huawei released traces for both its public-facing
FaaS platform and its internal FaaS workloads. The Huawei Public
trace has a very similar profile to Azure. The Huawei Private trace
includes information about 200 functions monitored over 141 days
running on a private cluster. This trace has more acute character-
istics. Despite the smaller number of functions, the trace reports
much higher invocation counts, and the functions run much faster
and more frequently compared to Azure’s. It also reports bursty
request rates at sub-minute scale. These differences underline the

need to be capable of generating load based on various traces to model
different realistic Serverless Cloud profiles.

Critical statistical properties in traces
We consider four critical statistical properties of the pro-
duction traces that capture core FaaS behavior and need
to be preserved in order to have a representative load for
FaaS experimentation. These are the distributions of: (i) the
average execution duration of distinct functions (i.e., regard-
less of the number of their invocations), (ii) the popularity
of functions defined as the percentage of invocations out
of the total daily load, (iii) the execution durations of all
invocations (similar to (i) but now functions are weighted
by their number of invocations), and (iv) the arrival rates of
invocations.

2.2 Relevance to research
We now discuss how the aforementioned properties drive and affect
popular FaaS research areas. We seek to answer which are the most
important to deliver via a load generator for serverless research.
Cold-starts. A long line of research studies cold invocations and
proposes node-level [10, 16, 27, 30–32, 50, 51] and cluster-level [14,
15, 17, 18, 29, 35] techniques and policies to minimize the number
and/or the overheads of cold starts. The significance of cold starts
is relative to the runtime distribution of the functions [52] and their
frequency is dictated by function popularity and invocation arrival
rates. For instance, long running functions can amortize cold start
overheads more easily [52] and less frequently, while, on the other
hand, functions invoked burstily will regularly suffer from cold
starts [29].
Node-level resource management. Another important area of re-
search is node resource sharing among function invocations [10, 11,
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28] and memory deduplication [16] targeting consolidation, fewer
cold invocations and faster function communication [27]. Apart
from the distributions related to execution times and arrival pat-
terns, which dictate the concurrency among invocations, this line
of research also requires experimentation with real workloads to
capture CPU, memory and I/O activity.
Cluster-level policies. Multiple works [16–18, 21, 23, 28, 35] pro-
pose global schedulers to balance the load across nodes and present
techniques to (pre)allocate the necessary number of instances (e.g.,
containers) to deliver the incoming load. Such proposals are af-
fected equally by runtime distributions, functions popularity and
arrival rates. For instance, bursty requests can lead to imbalanced
scheduling and instance under-provisioning. Similarly, execution
time distributions and function popularity dictate the load of nodes.
While function emulation, e.g. via busy loops, has been used to sim-
ulate large clusters performance [18, 34], as FaaS research matures
the characteristics of real workloads, e.g., memory and storage ac-
cess, are leveraged by distributed scheduling policies [10, 21, 22, 38].

Generating load for serverless research
A load generator for FaaS experiments should provide all
the critical statistical properties present in industrial FaaS
traces, since most FaaS research areas are impacted by them.
Moreover, it is important for the generated load to be based
on real workloads.

2.3 Challenges in trace-driven load generation
Adopting the information of industrial traces to generate request
load while meeting the above criteria is not straightforward. First,
the traces represent experiments of massive load and scale. Both
traces report request rates of hundreds of thousands or millions of
invocations per minute, which probably run in clusters of hundreds
of nodes [49], while they span multiple days. Second, neither the
executable binaries nor the actual code of the trace functions are
typically disclosed. At the same time, the number of open-source
FaaS workloads available through benchmark suites is very low (i.e.,
in the order of 10s) to map the large number of reported functions
(e.g., 80K in the case of the Azure trace).

Therefore, there is a need for a methodology to scale down the
production traces, with respect to both invocations load and time,
while preserving their critical statistical properties, and to generate
smaller –yet representative– experiments; i.e., for small clusters,
and with total duration in the order of hours or even minutes. A
richer workload pool is also necessary to map the scaled down
trace functions to real workloads. Using workloads exhibiting a
variety of patterns (e.g., regarding I/O, CPU and/or memory usage)
is deemed essential to encapsulate realistic FaaS behavior.

2.3.1 Prior approaches. The FaaS literature has not responded in a
unified manner to the problem at hand. However, we do observe
some common patterns among various experimental methodolo-
gies, which we move on to discuss.
Emulation.Multiple works do not use trace data directly but rather
emulate some of their trends via synthetic load generators. This
enables experiments of tunable load (e.g., requests per second) and
arbitrary total runtime. For instance, multiple works use Poisson

processes [10, 12–15, 17, 18, 20, 26, 28, 46, 47] to generate bursty re-
quests for the workloads of a FaaS benchmark suite. Figure 1 shows
the statistical properties of such a trace for FunctionBench [43, 44],
configured to run for 2 hours with 144K invocations in total. Fig-
ure 1d shows how a Poisson process models bursty arrival rates,
which is the reason why several FaaS research works opt for it.
However, compared to the Azure’s day 1 trace (24h and 908M in-
vocations) we find that multiple other properties are violated. The
workload and invocations runtime distributions (Figures 1a, 1b) are
shifted to the left (i.e., shorter execution durations), while the re-
quests are uniformly distributed among the functions, thus violating
the popularity trends (Figure 1c). Furthermore, as it becomes evident
in Figure 1d, the load does not fluctuate throughout the duration of
the experiment, despite it being sufficiently bursty (since it is mod-
eled after a Poisson process). Other researchworks [28, 46, 48] exam-
ine other distributions as well (e.g., uniform) to generate synthetic
FaaS load, leading to similar problems. Finally, some works [18, 34]
isolate the skewed popularity of FaaS functions to artificially gen-
erate load, e.g., by directing 98% of the requests to a single function
while uniformly distributing the rest 2% to a limited number of
functions [18]. Such a strategy still fails to adhere to the actual
execution time distributions and to the high variability of the load
over time.
Random trace sampling. Other works [11, 16, 29, 34–36, 48] use
directly the public traces to generate load. To scale down their
experiments, they randomly sample the reported trace functions,
and use the invocation arrival time series of the selected subset to
generate requests. To further scale down the load, they may propor-
tionally reduce the absolute number of invocations and randomly
select a time windowwithin the trace [11, 36, 48, 49]. They typically
map the randomly selected functions to real workloads with sim-
ilar characteristics [16, 35, 48]. However, random downsampling
in all dimensions (number of functions, load and time) leads to
inconsistent experimentation [49] and, as we show in Figure 1, it
can also violate statistical properties. We depict a trace that we
constructed by mapping FunctionBench workloads to randomly
sampled functions from the Azure trace. We also downsample the
number of invocations proportionally [21] to generate a trace of
144K invocations and 2h experiment (similar to the previous ex-
ample). Figure 1c shows how this approach succeeds in providing
skewness in functions popularity (e.g., 80% of the invocations refer
to the same function), but Figure 1b shows how the runtimes distri-
bution is far from the target. Also Figure 1d shows that, despite a
single huge spike in requests, the general load of the trace is low.
These problems are a direct outcome of using only a small random
sample of the original trace.
Busy loops.Many of the aforementioned violations of statistical
properties are derived, among others, from the limited number of
real workloads used in the experiments. To address that, multiple
works [18, 34, 48, 49] fabricate synthetic functions, such as busy
loops, that follow more closely the trace distributions of execution
times and memory usage. However, such approaches fail to provide
real FaaS behavior and real data operation.
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Open challenges for a representative request generator
A unified methodology to generate FaaS load is still missing.
The major challenges we identify are (i) the creation of a
pool of workloads that satisfies statistical characteristics
of trace functions while encapsulating real FaaS behavior
and (ii) the downscaling of trace load and time dimensions,
to generate series of requests over time which preserve all
critical statistical properties of the production-scale traces.

3 FAASRAIL
In this section we present FaaSRail, a load generator for serverless
research, that tackles the challenges and meets the requirements
discussed in Section 2. In summary, FaaSRail’s goals are to:
(1) scale up the number of the available real-world (non-synthetic)

FaaS workloads and map them to a representative subset of
trace functions;

(2) scale down the trace with regard to time (i.e., duration of the
experiment) and load (i.e., total number of requests);

(3) preserve the key statistical properties of the original trace, as
outlined earlier;

(4) provide a utility that combines the above steps to generate a
series of requests for real-world FaaS workloads, which closely
tracks the original trace, and can be used for consistent evalua-
tion of serverless research artifacts.
FaaSRail is implemented as two open-source components: (i) the

offline “shrink ray”, which appropriately augments the input bench-
marking suite(s), downsamples the input production trace, and
creates a mapping between the two to generate experiment specifi-
cations, and (ii) the online, versatile load generator that can further
parameterize and replay such specifications against a backend FaaS
system. FaaSRail receives a target maximum request rate and a tar-
get total execution duration as inputs from the user and generates a
representative scaled-down trace of load. It also supports multiple
modes, as we discuss next. An overview of the methodology and
the design of FaaSRail is illustrated in Figure 2, and elaborated in
the rest of this section.

3.1 Mapping trace functions to real workloads
3.1.1 Augmenting the real workloads. Despite the rich information
existing in the released public traces about production FaaS work-
loads, a component critical for their reproducibility is missing. The
binaries of the functions are undisclosed. Therefore, researchers’
best chance to reproduce such a setting is to use open-source work-
loads instead. Nevertheless, the number of open-source FaaS work-
loads which can be reliably considered representative of real-world
use cases is low [43–45, 53, 54], in the order of tens, even if ag-
gregated. Azure Functions includes tens of thousands of distinct
Functions in their released dataset, and this is merely a small subset
of their cluster’s actual load [55]. This renders the matching be-
tween Functions from public traces and representative open-source
workloads a major challenge.

Therefore, the need to synthetically augment such open-source
workloads becomes apparent and inevitable. In the scope of this pa-
per, weworkwith 10 representative open-sourceworkloads adopted
from the popular FunctionBench suite [43, 44], shown in Table 1.We

Table 1: Workloads used in this paper, adopted from the Function-
Bench suite, along with a description of their functionality.

FunctionBench Description
chameleon HTML table rendering

cnn_serving JPEG classification CNN (tensorflow [56])
image_processing JPEG image manipulation

json_serdes JSON serialization & deserialization
matmul Matrix multiplication (numpy [57])

lr_serving Logistic regression serving (scikit [58])
lr_training Logistic regression training (scikit [58]))

pyaes Python AES encryption
rnn_serving Word generation RNN (pytorch [59])

video_processing Gray-scale effect application (opencv)

make their input more versatile and use a sufficient volume of input
data, to make sure that the execution time of each function can vary
significantly when possible. We consider each (function,input)
combination as a distinct Workload, and in this way we generate
a pool of Workloads with execution runtimes that span over the
whole distribution found in a trace (Section 2). In this way, in the
case of the 10 FunctionBench workloads at hand, we manage to
collect nearly 2300 distinct Workloads that follow Azure’s trace
distribution (Section 4).

To register the Workloads execution times, we deploy each in a
distinct container and run it multiple times to capture its average
warm execution time on a target machine.

3.1.2 Reducing Trace Functions. As discussed earlier, the number
of functions reported in published production traces can be large.
For instance, Azure Functions’ trace [39] contains statistics for more
than 80K distinct Functions. Such a number of functions is prohibi-
tively high to replay in the context of a single experiment – even
when disregarding the Functions’ invocation frequency.
Sampling. In Section 2 we discussed how randomly sampling trace
functions may fail to preserve their critical statistical properties.
Nevertheless, some coarse-grain sampling can still be effective. Sea-
sonality in the total number of invocations across days shows clear
weekly and diurnal patterns in the trace [39]. We further examine
the reported daily (a) average execution time and (b) number of
invocations for each function in Azure’s trace, across all included
days. We find that almost 90% of functions yield CVs (Coefficients of
Variation) less than 1 (Figure 3) for both (a) and (b), suggesting low
variability across days. Therefore, it should indeed be statistically
safe to randomly pick a single day of a released trace (e.g., the first),
thus reducing the total number of Functions we have to work on.
Aggregation. In Section 2, we discussed that a critical statistical
property of public traces is the distribution of execution times
of function invocations, and how the typically short execution
durations have been a major design factor for FaaS infrastructure.
One way to further reduce the number of Functions to work on,
while guaranteeing to adhere to the aforementioned distribution,
is to aggregate all trace’s Functions based on their reported mean
execution delays. Each of these groups can then be considered as a
single “super-Function” that needs to be matched with one of the
realistic distinct Workloads of our pool. We consider the number of
invocations for such “super-Functions” (henceforth referred plainly
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Figure 2: Overview of the methodology components, the flow of information, and the design of FaaSRail.

as Functions) to be the sum of those of the actual trace’s functions
it comprises.
Popularity. At first glance, it may seem as if the above aggregation
of trace’s functions based on their average execution time distorts
functions’ popularity in terms of their number of invocations (Sec-
tion 2). We move on to meticulously analyze this sort of distortions
for the case of the Azure trace. We define a function’s popular-
ity as the percentage of its number of invocations during a day
over the total number of all functions invocations that day. We
calculate that value for each initial function in the trace, as well as
the corresponding new value for each Function produced by the
aggregation step of our methodology. Subsequently, for each new
Function, we compare its new popularity value with the maximum
one among all initial functions in the trace with the same average
execution duration. Figure 4 illustrates the CDF of these differences:
the popularity changes among the 12757 new Functions due to the
aggregation. Apart from 3 Functions whose popularity in terms of
invocations is misrepresented by merely 1%, and can be considered
outliers, we concur that the vast majority of Functions’ popularity
values remain virtually unaffected.

3.1.3 Mapping Functions to Workloads. By now, we have accumu-
lated a (reduced) set of Functions based on the input trace, and
an (augmented) pool of Workloads produced by the input bench-
marking suite(s). We hereby describe FaaSRail’s algorithm to map
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Figure 3: CDF of the Coefficients of Variation of functions’ reported
daily execution durations and number of invocations, across all days
of Azure’s trace [39], for all functions in the dataset.

each Function to a Workload, without significantly distorting their
respective distributions.

First, FaaSRail defines a (configurable) percentage error thresh-
old; i.e., the maximum percentage of the reported average execu-
tion time of a Function that the mapping is permitted to diverge
by. Subsequently, FaaSRail associates each Function with a set of
Workloads in the pool while upholding this threshold (note that
each Workload may be associated with more than one Function
at this point). When no Workload can be associated with a Func-
tion in accordance with the threshold, FaaSRail just picks the one
with average execution time closest to that of the Function. This
relaxation is particularly useful for a few long-running outliers,
whose rare invocations, even combined, end up never impairing
the distribution of execution durations.

Finally, FaaSRail goes through the 1:N mappings of Functions
to Workloads and selects one of the mapped Workloads for each
Function. The workload selection aims to create a balanced distri-
bution of different benchmarks mapped to Functions, while still
converging to the execution time distribution of each function in
the original trace.

3.2 Generating load
So far, we have constructed a set of Workloads mapped to repre-
sentative Functions of a public trace. Each Workload inherits its

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

Function's "Popularity" Change

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 4: CDF of Functions’ popularity changes due to their aggrega-
tion based on their average execution time in our methodology, for
the case of Azure’s trace.
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corresponding Function’s total number of invocations and their
distribution over time (number of invocations during each of the
1440 minutes of the day reported by traces). However, as already
discussed, the traces report hundred millions or even billions of
invocations within a 24 hour window. In this section, we describe
FaaSRail’s modes to downscale the load and to generate series of
invocation requests over time for the Workloads (FaaSRail output
trace) that can be used in a single experiment, without violating
the statistical properties of the initial traces.

FaaSRail takes as input (i) a target maximum request rate, and
(ii) a target total experiment duration from the user.

3.2.1 Spec mode. This mode directly downscales the data in the
traces. First, we describe how it scales the request rate, trying to
minimize losses in representativity during the downsampling. Then,
we describe how FaaSRail scales in time a trace’s invocation rate
for each Function.

3.2.1.1 Scaling the Request Rate. Given a target maximum re-
quest rate as input, FaaSRail can scale the number of requests that
should be recorded on the output experiment specification for each
minute. To achieve this, it normalizes the number of invocations per
minute in the trace for each Function, so that the total number of in-
vocation requests aggregated across all Functions during the busiest
minute in the trace (i.e., also in the experiment) approximates this
input target rate, and no other minute ever surpasses it. In this
way, FaaSRail effectively downsamples the trace, without severely
altering any trends of invocation request rates of the trace over the
input minutes. Of course, as it would be true for any downsampling
method over a highly skewed trace, misrepresentation of some
functions’ popularity is inevitable the more the functions’ request
rates get scaled down. In this case, the aggregation of the trace’s
functions over their average execution durations, described in §3.1,
ends up aiding in minimizing distortions to the final distribution of
invocations’ execution time due to request rate scaling.

3.2.1.2 Scaling in Time. One of FaaSRail’s inputs is a target
duration of the experiment. To meet this goal FaaSRail can be
configured to use two different methodologies.
Thumbnails (default mode). With this methodology, FaaSRail at-
tempts to downsample the per-function data about invocations
over 24h in a way that somewhat preserves each request rate’s
variability over this time. To accomplish that, for each Function,
FaaSRail aggregates adjacent minutes together by summing their
reported numbers of invocations. For instance, if configured for a 2
hour experiment, FaaSRail aggregates the 1440 minutes of the day
reported in a trace into 120 groups of 12 minutes each. Each such
group is mapped to an actual wall-clock minute of the experiment.
The number of invocations of each Function during each group (i.e.,
wall-clock minute of the experiment) is the sum of the invocations
per minute reported for all minutes in the group.

This scaling allows for an experiment to capture the diurnal
patterns identified within the specific day (Section 2, Figure 1d),
at a configurable approximation (i.e., depending on the wall-clock
duration of the experiment). This allows studying the behavior of
the target machine (or cluster) over a variety of load volumes, all
within the same experiment. On the other hand, being effectively
a sampling method, this practice ends up smoothening the time

series of the number of invocations per minute for each Function.
This, in turn, can hide any steep peaks manifested among minutes
of the original trace.
Minute Range. Alternatively, FaaSRail can be configured to replay
a user-defined minute range in the trace that matches the target
total execution duration. This way there is no need for further
downsampling in time. This approach is favorable when prioritiz-
ing the study of extremely bursty invocation requests at a minute
granularity (assuming the original trace’s data allows it). How-
ever, it overlooks any daily trends manifested (unless a day-long
experiment is an affordable option too).

3.2.1.3 Sub-minute behavior modeling. FaaSRail down-scales
the per-minute request rates over time reported in its input trace.
However, sub-minute request rate distributions need to be modeled
as well. To achieve that, by default, FaaSRail uses the per-minute
request rate as the intensity (𝜆) of a Poisson process for that minute;
i.e., it inserts exponentially distributed (∼ 𝐸𝑥𝑝 (𝜆)) delays between
the invocations. Alternatively, FaaSRail can be instructed to inter-
pret the specified per-minute rate as the deterministic number of
requests to be emitted. In this case, inter-invocation delays can
be either randomly distributed within the minute (i.e., following
a uniform distribution), or equidistant (i.e., constant per-minute
rate, although still possibly varying across minutes according to the
specification), as implemented in relevant utilities [49]. We opted
for modeling after a Poisson process as the default configuration,
as this can somewhat realistically emulate burstiness in request
arrivals even at the second scale (more in §3.3).

3.2.2 Smirnov Transform Mode. While FaaSRail’s main target is to
generate downsampled load that follows the invocation rate over
time for each Function as reported in the trace, it also supports an
execution mode that can emulate synthetic invocation rates per
Function.

By appropriately sampling our Workload pool, we can produce
a series of requests that follow the distribution of all invocations’
execution durations reported in the trace. To achieve that, we apply
the Smirnov Transform (also known as Inverse Transform Sampling
method) [60, 61], as illustrated in Figure 5 and described below.

Figure 5: Invocation request generation over Azure Functions’ trace
using the Smirnov Transform mode in FaaSRail.

Let 𝐹𝑖 be the empirical weighted CDF of the execution duration of
all function invocations in the input trace during the examined day,
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considering again their reported average values. First, we employ
a PRNG (Pseudo-random Number Generator) to draw a sample of
random numbers, uniformly distributed in [0, 1], of size equal to the
number of function invocations we want to trigger during the ex-
periment; we denote the respective random variable as 𝑈 ∼ U[0,1] .
Using 𝐹−1

𝑖
, an approximation of the inverse CDF via linear inter-

polation [62], we can generate 𝑇𝑡 from 𝐹−1
𝑖

(𝑈 ) according to the
Smirnov Transform. Subsequently, we associate the value of 𝑇𝑡 to
one of the Workloads in our pool as shown earlier. As a result, in
this execution mode, the produced series of requests follows the
distribution of execution durations of function invocations in the
trace (evaluated in §4).

FaaSRail can then replay such a request sample by modeling
requests’ inter-arrival delays via a specified distribution (e.g., ex-
ponential, random, equidistant). This improves over prior work
(Section 2), as the latter use fewer workloads, often invoked in
equal volumes, and without considering the distribution of their
execution durations at all.

3.3 Discussion
In this section we discuss the extensibility of FaaSRail and some of
its current trade-offs and limitations.
Flexibility to adopt new traces. FaaSRail is not bound to the
currently available FaaS public traces. It fundamentally provides
a statistical method to properly downsample traces’ data, while
preserving some critical statistical properties. The method can be
applied to any future FaaS trace if it reports similar statistics.
Flexibility to adopt new real workloads. Similarly, FaaSRail is
not bound to FunctionBench [43, 44]; it can be extended to include
any real workload. A larger volume of benchmarking suites would
lead to even greater variety of output distinct Workloads, dissim-
ilar to one another. In this paper we showcase how merely 10
initial benchmarks can already be sufficient to enrich workload
pools through our methodology. However, in the future, we plan
to augment and integrate more open-source benchmarking suites
(e.g., [45, 53, 54]), aiming to significantly enrich our Workload pool
even further.
Memory usage. The current version of FaaSRail focuses on statis-
tics related to the execution time and the invocation rates of func-
tions reported in the published traces. Another important statistic
is memory usage. While FaaSRail workloads’ memory footprints
are similar to the ones used in literature [16, 31, 32, 52], these do not
strictly follow the corresponding distributions reported in the traces.
Both memory usage and access patterns are characteristics inherent
to the applications, and that renders their manipulation a challenge.
We believe that enhancing the variety of initial benchmarks is
a crucial step towards approaching traces’ memory distributions
without sacrificing the representativity of workloads otherwise,
and we consider this as our next step.
Sub-minute behavior. FaaSRail uses data from public traces to
generate representative per-minute load and employs Poisson pro-
cesses or other statistical methods to generate arrival rates (time-
series) within every minute. The reason for this is that Azure’s trace
reports only invocations per minute. However, Huawei’s trace in-
cludes also per-second rates, and we consider including this statistic

in FaaSRail’s method that generates time-series of requests as fu-
ture work. Nevertheless, the key take-away from Huawei’s trace
is that burstiness is also present at seconds granularity, and FaaS-
Rail emulates this sub-minute behavior via Poisson processes.
Fixed input per function. In its current form, FaaSRail does not
vary the input of every function across invocations, thus the ex-
pected execution time does not vary across them. We consider
experimenting with variable inputs as a next step.
Long idle times. It should be noted that not every kind of experi-
mentation benefits from scaling the input trace in time. E.g., scaling
in time, scales down idle times across invocations (e.g. minutes
may become seconds). For that reason, experiments that focus on
sandbox caching policies [34], or predictive sandbox preallocation
optimizations [39, 40], might be better off using FaaSRail’s Minute
Range mode that does not scale load in time.

4 EVALUATION
In this section, we evaluate FaaSRail’s trace down-scaling and load
generation, using as input the Azure [39] and the Huawei [40] pub-
lic traces introduced in Section 2. We use FunctionBench [43, 44]
(§3.1, Table 1) to generate FaaSRail’s Workload pool. We attempt to
provide answers to the following set of questions:

(1) Does FaaSRail’s workload augmentation meaningfully aid
in approximating the distribution of execution runtimes, as
reported in a production trace?

(2) How well do FaaSRail execution modes (Spec and Smirnov)
approximate: (i) the CDF of the execution runtimes of func-
tion invocations, (ii) the distribution of function invocations
over time, and (iii) the relative popularity of functions, based
on a production trace?

(3) How much does our methodology distort the overall execu-
tion characteristics of the input benchmarking suite(s)?

We measure Workloads execution runtimes, calibrated to follow
the runtime distributions of each trace (Section 3.1), on a 2-socket
Intel Xeon 4314 (IceLake), with 128GiB memory and 16 cores on
each socket. To minimize jitter, we use a single NUMA node and run
each Workload alone, pinned on a single core with fixed frequency
and SMT disabled.

4.1 Function Mapping

Workloads runtime distribution (Q1). Figure 6 shows four CDF
plots, all referring to execution runtimes of distinct workloads:
(i) Azure Functions’ production trace [39], (ii) Huawei private func-
tions’ production trace [40], (iii) vanilla FunctionBench suite [43, 44]
with representative input found in the literature [31, 52], and (iv)
FaaSRail’s Workload pool.

It is evident that using as few as 10 vanilla FunctionBench work-
loads is too inflexible to accurately emulate production workloads.
On the other hand, we observe that the CDF of FaaSRail’s Workload
pool is significantly smoother and approximates Azure’s. This show-
cases that FaaSRail’s simple way to augment existing benchmark
suites improves the representativity of the generated Workloads.

The Huawei trace refers to internal workloads, and reports exe-
cution times for merely 104 distinct ones during its first day. Com-
pared to Azure’s, this is significantly smaller, and reports a quite
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Figure 6: CDFs of execution runtimes (cardinality shown in paren-
theses in the legend) for: (i) Azure Functions’ production trace,
(ii) Huawei private functions’ production trace, (iii) vanilla Function-
Bench suite with commonly used input, and (iv) FaaSRail’sWorkload
pool.

different distribution of execution durations; functions run signifi-
cantly faster. Judging from Figure 6, and due to the small number
of reported functions, even plain FunctionBench workloads might
be suitable to represent its runtime distribution to some extent.
Nevertheless, the variety in FaaSRail’s Workload Pool allows bet-
ter approximating the distributions of both traces. For the case of
Huawei, a smaller subset from the Pool consisting mostly of Work-
loads with shorter runtimes ends up mapped for generating load
from. This is better shown in the next subsection, where we study
the distribution of invocations execution durations in a FaaSRail-
generated trace.
Workloads memory distribution. While FaaSRail’s current ver-
sion does not include a methodology to approximate the memory
distribution of trace functions, we study how far it is from that goal.
Figure 7 shows the CDF of the memory usage distributions of Work-
loads in FaaSRail’s pool, along with the CDF reported in Azure’s
trace for deployed Applications. We observe that the distribution of
memory usage of FaaSRail’s Workloads is actually not that dissimi-
lar compared to Azure’s, by simply settingWorkloads memory sizes
close to what can be found in literature [31, 52] Nevertheless, it is
clearly shifted to its left (i.e., less memory usage in general). This
is expected, and already discussed in §3.3. Moreover, note that an
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Figure 7: CDFs of memory usage of (i) ∼17K Applications (i.e., ag-
gregated ∼45K functions) in the first day of Azure Functions trace,
and (ii) all distinct Workloads that correspond to ∼117K invocation
requests produced by FaaSRail in Spec mode.

Application in Azure Functions often comprises multiple functions;
in this case, their aggregated memory has been reported.

4.2 Spec Mode
FaaSRail’s Spec execution mode aims to generate load by down-
sampling traces while preserving their characteristics with respect
to: (i) the distribution of execution runtimes, (ii) the request rate
over time, and (iii) the relative popularity of functions. We use
FaaSRail’s Spec mode to scale the Azure trace down to 2 hours
and to 20 requests per second at most. This scales the ∼908M in-
vocations of Azure down to ∼118K invocations. We evaluate the
fidelity of the down-scaled trace to the original, with regard to the
aforementioned characteristics.
Invocations runtime distribution (Q2). Figure 9 shows the CDFs
of the execution duration of all the invocations in the Azure trace
and the down-scaled FaaSRail-generated load. FaaSRail-Spec man-
ages to accurately model the distribution of the original trace.
Invocations request rates over time (Q2). Figure 8 visualizes the
relative number of invocations during the 2 hour experiment, along
with a similar experiment using a plain Poisson process (Section 2)
and the actual Azure’s trace (first day only), each normalized to
its peak. FaaSRail-Spec uses its default thumbnail configuration to
scale time (Section 3), meaning that it aims to encapsulate the load’s
trends of the entire day within the 2h duration of the experiment. It
is apparent that FaaSRail successfully models the varying number
of invocations of its input trace; it closely follows local minima and
maxima of the trace, in contrast to the commonly used plain Poisson
process. Furthermore, due to itself employing the model of Poisson
arrivals as well to model per-second request rates, FaaSRail achieves
to successfully emulate sub-minute burstiness equally well.
Function popularity (Q2). We hereby evaluate function popular-
ity in the sameway as in [39], defining popularity as the distribution
of invocations across functions. Figure 10 shows the cumulative
fraction of total function invocations attributed to the most popular
functions in the trace, for both FaaSRail and the Azure trace’s first
day. FaaSRail’s curve is shifted to the right of Azure’s due to the
lower number of its distinct Workloads compared to the number
of functions present in Azure’s first day. Apart from that, the two
curves have similar characteristics. First, their topmost popular
functions are responsible for a disproportionately large fraction of
all invocations. Furthermore, their slope is similar, and they both
have a tail of functions with low popularity. Judging from these,
we concur that FaaSRail manages to sufficiently model the skewed
popularity of the input trace functions.

4.3 Smirnov Transform Mode
As described in §3.2.2, in this execution mode, FaaSRail focuses only
on following the distribution of execution runtimes of a trace, and
issues the invocation requests over time inserting delays based on
the specified independent distribution (i.e., exponential, uniform or
constant). The purpose of this mode is to enable studies of arbitrary
load over workloads representative of the trace. We generate two
distinct traces of 120K invocations, each having as input the Azure
and the Huawei trace, respectively.
Invocations runtime distribution (Q2). Figures 11a and 11b show
the CDF of invocations’ expected execution durations, along with
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Figure 9: CDFs of the execution runtimes for the Azure trace and
the FaaSRail-Spec down-scaled trace.
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Figure 10: Cumulative fraction of total function invocations due to
the most popular functions, for the first day of Azure Functions’
trace and a series of 117760 requests produced by FaaSRail in Spec
mode (configured for a 2 hour experiment, with a maximum rate of
20 requests per second).

that of the corresponding production traces. It is evident that FaaS-
Rail manages to closely model the distribution invocations’ execu-
tion durations for both cases, thanks to its methodology’s Function
mapping. For the same reason, the produced invocations adhere to
the popularity characteristics that we showed earlier.

Replaying the produced series of requests against a FaaS sys-
tem using exponentially distributed request inter-arrival delays
–as commonly done to model them as a Poisson process– using a
constant rate of requests per second leads to generated load which

is significantly more representative of a production trace compared
to using a plain benchmarking suite.
Comparison with Spec mode. Juxtaposing Figures 9 and 11a
reveals a slight divergence of FaaSRail’s CDF curve from Azure’s in
the case of Spec mode compared to Smirnov Transform. We attribute
this to the additionally occurring downsampling steps of FaaSRail’s
methodology (§3.2.1), which only occur in the case of the former
execution mode, since it is the only one taking into account the
per-minute invocation request rates of each Function.

4.4 Workload characteristics preservation
A benchmarking suite, like FunctionBench, includes a set of func-
tions that have certain execution characteristics; e.g., CPU intensity,
memory access patterns, I/O activity, etc. Augmenting such a suite
unequally into a Workload pool can potentially distort the overall
execution characteristics of the suite, especially when the popular-
ity of the trace’s mapped Functions does not effectively make up
for such imbalance losses. To answer Q3 and determine how does
FaaSRail’s methodology affect the representativity of the initial
benchmarks, we produce request traces using FaaSRail, and plot
the number of invocations per initial benchmark (i.e., disregarding
its varying input) for both traces in Figure 12.

Figure 12a shows how 118K produced invocation requests are dis-
tributed among the initial FunctionBench functions, after mapping
the Workload pool to Azure’s trace. We observe that most of them
are sufficiently represented, despite the discrepancies both among
them and compared to a hypothetical, vanilla, equidistributed case
(i.e., in which each benchmark would correspond to 10% of the
total load). This is due to deviations between the distributions of
Azure’s trace and FaaSRail’s Workload pool, but even more so due
to the popularity of certain Functions, which highly affects this bal-
ance, essentially dictating the occurrences of the requests through
the experiment’s specification. The reason for lr_training’s low
representation is its extremely long execution durations compared
to typical FaaS functions according to the production traces. For
instance, its quickest variation requires more than 3s to run. How-
ever, only about 3% of all invocations in Azure’s trace reportedly
run for that long or longer (as shown in Figures 11a and 9), which
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Figure 11: Plotted CDFs of all invocations’ expected execution durations (their number is shown in parentheses in the legends) for each
production trace examined, against FaaSRail with the respective trace’s Function mapping.
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Figure 12: Balance among benchmark types (i.e., initial benchmarks of the FunctionBench suite, disregarding their varying input) in terms of
their percentage of invocations within a request sample produced by FaaSRail, for each production trace.

explains the low representation of lr_training in FaaSRail’s se-
ries of requests as well. The special case of cnn_serving being
so rare among the produced requests is attributed to the lack of
augmentation for the specific workload, which renders it a less
probable candidate to be matched to a Function during FaaSRail’s
mapping stage.

On the other hand, Figure 12b visualizes the same distribution for
the case of 35000 invocations produced by FaaSRail’s Smirnov Trans-
form execution mode, having its Workload pool mapped to Huawei
private functions’ trace. In this case, we observe severe imbalances;
namely, nearly 48% of all invocation requests refer to some variation
of the pyaes function. Moreover, three benchmarks (cnn_serving,
lr_training and video_processing) never appear in the output
request series. The reason for this is twofold. First, as we showed
in Figure 6, Huawei’s trace includes many short-running functions.
Second, not all FunctionBench benchmarks are augmented equally,
nor are their execution durations equally versatile (i.e., sensitive to
their input). In general, under our current FunctionBench augmen-
tation, pyaes dominates in the Workload pool, and even more so
among short-running functions, leading to the imbalanced bench-
mark representation observed in this case. The rest of the invoca-
tions are otherwise sufficiently distributed among the six remaining
benchmarks.

5 RELATEDWORK
In Section 2, we extensively analyzed the common practices found
in literature for generating FaaS load, namely: (i) synthetic loads via
common distributions (e.g., Poisson process), and (ii) loads derived
by randomly sampling a production trace, like Azure’s. Here, we
briefly discuss some open-source generators that mostly follow
such practices.

FaaSProfiler [46] is a tool that generates synthetic load for test-
ing and profiling FaaS platforms. The user defines the target request
rate and picks the invocation pattern. It can be generated from
a pool of known distributions (e.g., a uniform distribution, or a
Poisson process). FaasProfiler uses ad-hoc workloads to generate
load, while we focus on augmenting workloads from known bench-
marking suites, taking care not to distort their overall performance
characteristics.

Illuvatar [48] is a Serverless platform designed primarily for
research purposes. Part of the open-source framework is a FaaS
load generator. It can be used to generate synthetic loads (e.g., based
on a Poisson process, as above), but can also generate loads from
production FaaS traces, like Azure’s. It randomly samples a subset
of functions from the original trace, and to further scale down the
load (e.g., concurrent requests), it tweaks their inter-arrival times.
It also maps each sampled function to the FunctionBench [43, 44]
workload with the closest execution time. In Section 2, we showed
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how the random sampling of production traces can generate non-
representative load over time, and how blindly mapping trace func-
tions to FunctionBench workloads can generate non-representative
runtime distributions.

Very recently, Ustiugov et al. presented In-Vitro [49], a method-
ology and set of tools to generate workload summaries from produc-
tion traces, instead of randomly sampling them. In-Vitro recursively
downsamples the trace while catering to always pick the most rep-
resentative candidate sample in terms of invocation rate, execution
times and memory usage, and models invocation arrivals as Poisson
processes. While this work is a more accurate solution for generat-
ing representative FaaS workloads from public traces than earlier
ones, it still is fundamentally different from FaaSRail. First and most
importantly, In-Vitro relies on synthetic workloads (busy loops)
to generate load. As discussed in Section 2, such workloads fail to
capture complex behavior that is hard to synthesize in a realistic
fashion (e.g., memory access patterns, I/O intensity, etc.) and is
crucial for certain lines of FaaS research (e.g., intra-node resource
allocation, sandbox snapshotting, etc.). Second, In-Vitro operates
only upon a user-defined window of the input trace, the size of
which dictates the duration of the experiment. It is therefore inca-
pable of encapsulating the entire trace’s information (e.g., trends in
time).

6 CONCLUSION
We present FaaSRail, a load generator for serverless research. FaaS-
Rail combines open-source, real-world, non-synthetic FaaS work-
loads from popular benchmarking suites, like FunctionBench, and
public request traces of commercial FaaS platforms, to generate
representative series of requests suitable for evaluating Serverless
research prototypes. We identify critical statistical properties found
in traces and explain why generated FaaS load should adhere to
them. We describe FaaSRail’s approach to scale the generated load
down, both in volume and in time, without violating such proper-
ties. Finally, we present FaaSRail’s execution modes, extensively
evaluate their generated load’s representativity against the two
production-scale traces released by Azure Functions and Huawei,
and compare them with common practices employed by today’s
Serverless literature.
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