
Grant Agreement No 101092850

PILOT REQUIREMENTS & DEFINITIONS

DELIVERABLE NUMBER: D.2.1

DUE DATE: 30.06.2023

DATE OF SUBMISSION: 14.07.2023

NATURE: R

DISSEMINATION LEVEL: PU

WORK PACKAGE: WP2

LEAD BENEFICIARY SED

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 2

DOCUMENT CONTROL SHEET

DELIVERABLE TITLE: PILOT REQUIREMENTS & DEFINITIONS

AUTHORS: KRZYSZTOF NIENARTOWICZ (SED)

CONTRIBUTORS: LAURENT EYER (UNIGE), DANIEL KREFL (SED), MICHAEL WURZER (KTM)

REVIEWERS: FOIVOS ZAKKAK (RHAT), VINCENT CASILLAS (SIPEARL)

APPROVED BY: CHRISTOS KOTSELIDIS (UNIMAN), DIONISIOS PNEVMATIKATOS (ICCS)

DOCUMENT HISTORY

Version Date Status Description/Comments
0.1 16.05.2023 Draft ToC
0.2 12.06.2023 Draft Added initial descriptions of UNIGE & SED pilots
0.3 19.06.2023 Draft Added initial description of KTM pilot
0.4 05.07.2023 Draft Final pilots’ descriptions & KPIs
0.5 10.07.2023 Draft Draft released for internal review
0.6 11.07.2023 Draft Integrated changes based on RHAT review
0.7 12.07.2023 Draft Integrated changes based on SIPEARL review
0.8 13.07.2023 Draft Updates/clarifications
1.0 14.07.2023 Final Final version submitted to EC

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 3

DISCLAIMER

AERO has received funding from the European Union’s Horizon Europe research and innovation
programme under Grant Agreement No 101092850. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or the granting
authority. Neither the European Union nor the granting authority can be held responsible for them.

This document contains material and information that is proprietary and confidential to the AERO
consortium and may not be copied, reproduced or modified in whole or in part for any purpose without
the prior written consent of the AERO consortium.

Although the material and information contained in this document is considered to be precise and
accurate, neither the Project Coordinator, nor any partner of the AERO Consortium nor any individual
acting on behalf of any of the partners of the AERO Consortium make any warranty or representation
whatsoever, express or implied, with respect to the use of the material, information, method or
process disclosed in this document, including merchantability and fitness for a particular purpose or
that such use does not infringe or interfere with privately owned rights.

In addition, neither the Project Coordinator, nor any partner of the AERO Consortium nor any
individual acting on behalf of any of the partners of the AERO Consortium shall be liable for any
direct, indirect or consequential loss, damage, claim or expense arising out of or in connection with
any information, material, advice, inaccuracy or omission contained in this document.

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 4

TABLE OF CONTENTS

1 Introduction .. 7

2 AERO Pilots .. 8

 Automotive “Digital Twins” with IoT-Cloud Interoperability (KTM) ... 8

2.1.1 Pilot Description ... 8

2.1.2 Architecture ... 8

2.1.3 Software Components .. 9

2.1.4 AERO Integration Components.. 10

2.1.5 Deployment Strategy, Evaluation & KPIs .. 10

 High-Performance Algorithms for Space Exploration (UNIGE) .. 10

2.2.1 Pilot Description .. 10

2.2.2 Architecture .. 10

2.2.3 Software Components ... 11

2.2.4 AERO Integration Components.. 12

2.2.5 Deployment Strategy, Evaluation & KPIs .. 12

 HPC/Cloud Database Acceleration for Scientific Computing (SED) .. 13

2.3.1 Pilot Description .. 13

2.3.2 Architecture .. 13

2.3.3 Software Components ... 14

2.3.4 AERO Integration Components.. 15

2.3.5 Deployment Strategy, Evaluation & KPIs .. 15

3 Summary .. 16

Appendix I: UNIGE IVP dependency list ... 17

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 5

Executive Summary

This document presents the pilots that will be used in the context of the AERO project. The purpose
of the document is for use case partners to explain their use cases, their various software components,
SLAS, and envisioned integrated systems for the final evaluation as well as a broader context in which
the use cases are embedded: automotive, scientific high-performance computing and parallelized
relational databases for Big Data time-series.

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 6

List of Abbreviations & Acronyms

Abbreviation/Acronym Meaning
AOT Ahead of Time
CU7 Gaia Variability Study Coordination Unit
DB Database
DBMS Database Management System
DCN Document Change Notice
DPCG Gaia Data Processing Center in Geneva
ESA European Space Agency
GPAC Gaia Data Processing and Analysis Consortium
HPC High Performance Computing
JDK Java Development Kit
JIT Just in Time
JMS Java Messaging Service
JVM Java Virtual Machine
LTS Long Term Support
MPP Massive Parallel Processing
PG, TBase PostgreSQL DBMS or PG MPP fork
REST REpresentational State Transfer
SLA Service-Level Agreement
VIN Vehicle Identification Number

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 7

1 Introduction

The AERO project output is intrinsically linked to the possibility of using it to solve real-life problems
defined in the context of WP2 “Pilot Migration and Optimization on the EU Cloud”. The development
and validation of the ecosystem is thus tightly bound to the three pilots we present here.

The pilot brought by KTM covers the dynamic and fast-paced domain of connected vehicles and
utilities, defined by the also-fast-evolving legal European system defining automotive and privacy
issues in the connected world. The second pilot, defined by the UNIGE Astronomy Department,
touches on compute challenges related to signal processing, supervised and unsupervised
classification of the Stellar Variability Studies of the ESA Gaia mission. The third pilot, interlinked with
the UNIGE goals, led by SED, aspires to enable GPU acceleration of the Massively Parallel Processing
(MPP) Database in order to unlock more thorough data analysis, including significant speed-ups for
scientific exploration and validation via ad-hoc querying in a petabyte scale MPP scientific Database
Management System (DBMS), yet generic enough to be adoptable in other domains.

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 8

2 AERO Pilots

 Automotive “Digital Twins” with IoT-Cloud Interoperability (KTM)

2.1.1 Pilot Description

The application of this pilot, called Vehicle Information Service, constitutes the core of a Digital Twin
concept. The Vehicle Information Service is a microservice by Pierer Mobility (parent company of
Pierer Innovation) to get information about vehicles manufactured by the group - including all brands
such as KTM, HUSQVARNA, and GAS. It is part of the whole Pierer Mobility backend services that
comprise numerous microservices performing different tasks that involve multiple
actors/stakeholders such as customers, dealers, suppliers, etc.

In order to test as many of these services as possible on the Rhea platform, a decision was made to
create vertical, self-contained, and testable releases of these services that can be tested on the EU
processor platforms. The number of services/releases will be grouped based on characteristics such
as: the variety of software components used, external services, databases, etc. In addition, due to
cybersecurity considerations, several aspects of these services will be obfuscated and/or altered
without compromising neither the functionality of the use case nor their business scope. Finally, all
identified microservices will be gradually released during the duration of the first year of the AERO
project.

Presently, the Vehicle Identification Service is the first microservice that has been distilled from the
Pierer Mobility backend infrastructure and represents a larger class of microservices that are built on
top of NodeJS with database interoperability. The purpose of this service is to identify individual
vehicles by their unique identification number (VIN). This number is then used to query for detailed
information stored in the database. VIN is a number which globally identifies vehicles and it is used
by multiple manufacturers and standardized by ISOs. The microservice obfuscates the VIN numbers
of vehicles by mapping them internally to custom unique identifiers for cybersecurity reasons.

The database holds an entry for each unique identifier. The entry data include: a) information
identifying the motorcycle, such as the model and article number; b) extra information, like whether
the vehicle is still under warranty, and c) technical information, including data from vehicle sensors
that could be a basis for a Digital-Twin construction, as well as the vehicle’s service history. This
information can be accessed via a REST API. Moreover, the service can validate vehicle identifiers and
perform additional verification activities related to additional business logic.

The last task of the Vehicle Information Service is to manage the database. The entries in the database
can be created, updated and deleted via the Vehicle Information Service. This can either be done via
the REST API or via Kafka.

2.1.2 Architecture

Vehicle Information Service, being a microservice, is a small part of a bigger system of services
working together. Thus, microservices need interfaces to communicate with other parts of the whole
system. Figure 1 depicts the architecture around the Vehicle Information Service.

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 9

Figure 1 KTM Digital Twin backend

The service has three interfaces to the outside world:

1. The database connector, which is used as a pooler of the connection to the database. Data
about vehicles can be fetched, updated and deleted.

2. A Kafka consumer, which receives updates for the database from the Kafka broker. Other
services can send new entries and update or delete existing entries.

3. A REST API, which is the main interface to the service used for the tasks described in Section
2.1.1. Verifying vehicle identifiers and receiving information about a vehicle is done via this
API, as it is also done for vehicle identifiers updates. This is the main way other services or
users can interact with the Vehicle Information Service.

2.1.3 Software Components

Vehicle Identification Services consist of the software components/frameworks listed in the table
below:

Software Component Description

Docker Container daemon to run application with dependencies in a container
isolated from the rest of the system and other containers

NodeJS
JavaScript Engine to run JavaScript outside of the browser. For
instance, it can be used to create a server application in JavaScript.

TypeScript
Type-safe superset of JavaScript. Used to ease the development of
JavaScript applications and make them more robust.

MongoDB Database used to store non-predefined data in a binary JSON format.

Kafka

Kafka is a distributed streaming platform that allows you to publish
and subscribe to streams of records. The streams are identified by
topic. Each client can subscribe to topics and receive a message as
soon as some other client publishes on the same topic.

Zookeeper

ZooKeeper is a server application to manage an application cluster. It
works with Kafka to distribute Kafka topic partitions to the brokers in
the cluster so that each message is only processed once and the
partition is moved to another broker if one broker has gone offline.

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 10

2.1.4 AERO Integration Components

The main integration components of this microservice are Docker and Apache Kafka. In addition,
depending on the scalability requirements, a Kubernetes deployment may be considered.

2.1.5 Deployment Strategy, Evaluation & KPIs

For initial tests, KTM acquired ARM cloud instances in Microsoft Azure, as all services are presently
deployed in the Microsoft cloud. As no GPU and no additional hardware extensions are currently
required for this use case, the results are expected to be similar to those when running on the Rhea
platform. The service and all additional components are deployed in Docker containers. Thus, it can
be moved easily to other hosts if necessary.

The Vehicle Information Service repository includes a test suite mainly consisting of system
integration tests, where the application is tested with the database. This suite can be used to test the
application and check if the behavior is consistent across both x86 and ARM architectures. In addition,
the Artillery load testing framework1 is used for load testing and performance comparisons to the
existing x86 deployments.

Fundamentally, the main KPI of this pilot (or collection of use cases) in the context of the AERO project
is to achieve parity both in functionality and in performance with the currently deployed services on
x86-based Microsoft Azure instances. In detail, the KPIs that will be assessed for the Vehicle
Information Service, as well as all other services from Pierer Innovation are:

➢ To achieve 100% pass-rate across all test suites currently used (both functional unit tests,
and integration tests) on the Rhea platform

➢ To achieve performance parity - and hence satisfy the current SLAs - in a single-node
deployment scenario on the Rhea platform with an x86-based instance. The metrics of interest
in this case are transactions per second, mean time between failures, latency, etc.

 High-Performance Algorithms for Space Exploration (UNIGE)

2.2.1 Pilot Description

Gaia Data Processing Centre in Geneva (DPCG) and Coordination Unit 7 (CU7) based at Observatory
of Geneva - part of University of Geneva (UNIGE) - are responsible for variability studies of the nearly
2.7 billion sources that the ESA Gaia mission observes. The main task is to classify and characterize
variable stellar objects/sources based on their time series from five products and three domains:
photometry, spectroscopy, and radial velocities. Gaia is the first Petabyte scale astronomical ESA
mission and operates on one of the biggest astronomical datasets up to date. The amount and
complexity of the data as well as the number of angles from which the data is analyzed, poses a
plethora of performance challenges in the Big Data and HPC domains.

2.2.2 Architecture

The DPCG Integrated Variability Pipeline (IVP) is a software stack composed of dozens of modules,
embedded in the VariFramework for large-scale HPC processing and for Big Data aspects. The most

1 https://www.artillery.io

https://www.artillery.io/

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 11

time-consuming task of IVP is the Period Search, which is mostly based on various Fourier-
transformation techniques that operate in the frequency domain and some advanced modelling for
specific types of stars. Currently, CU7 cannot look for periodic signals for all the stars from the
operational dataset, as a calculation of a single period might take up to a second; a prohibitive number
if run on a medium sized-cluster for over 2.5 billion stars.

In the context of AERO, we aim to overcome this limitation by taking advantage of GPU integration in
our algorithms. Figure 2 highlights in red, the placement of the main AERO dependency for IVP.

Figure 2 The Workflow of the VariCharacterization Module within IVP

Allowing the Period Search task to be run on all the sources is crucial to allow a deeper scientific
understanding of non-variable stars, which might then allow the creation of better machine-learning
models based on supervised training. Furthermore, if UNIGE manages to fit period-search of all
sources (vs 20% currently) into the processing window of two-three months, it might also merge the
Global Variability Detection module into the General Supervised Classification. Such a merge would
simplify the pipeline and allow for a more robust scientific output, as each of the sources would go
under much stricter algorithmic scrutiny - something that is currently impossible.

The integration of the GPU-enabled algorithms might also trigger the refactoring of VariFramework
to switch from embarrassingly-parallel processing to a scheduled mode, where data is aggregated
to be executed on the scarce-shared resource, i.e., the accelerator, when needed, and also computed
on the CPUs, so that proper utilization is achieved without introducing new bottlenecks.

2.2.3 Software Components

The baseline software components of this pilot are the following:

➢ The VariFramework stack (around 1M lines of code) based on Java 17 LTS.

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 12

o The VariPeriodSearch module with a dozen period-search methods for sparse time-
series.

o TornadoVM to enable GPU execution and acceleration.
o The dependency list of Vari software is quite big and is presented in Appendix I. It

includes around 400 open-source Java modules, including
▪ Apache Camel - implementation of Enterprise Integration Patterns for loose

coupling integration of modules, processing and storage.
▪ Apache Commons Math - for modeling and optimization implementations in

Java
▪ Active MQ - for JMS implementation for loosely coupled modules for

processing
▪ Apache OpenJPA - JPA implementation with in-house extensions to deal with

Big Data
▪ Spring and Spring Boot frameworks - for Inversion of Control patterns
▪ H2O - supervised classification framework, for ML training and inference.

➢ The DPCG/SED led Database hosted at UNIGE.

2.2.4 AERO Integration Components

The main hook in the scope of AERO for UNIGE is the TornadoVM framework provided by UNIMAN.
It will be leveraged to enable GPU capabilities in Java first in the VariPeriodSearch module, and then
in chosen Special Object Studies modules (most likely Planets and Microlensing).

2.2.5 Deployment Strategy, Evaluation & KPIs

As UNIGE’s primary goal is to enable GPU acceleration using TornadoVM, it has decided to deploy
first on the Gaia dedicated x86-based cluster, which comprises 1080 CPU cores and 135 embedded
Intel GPUs. It will then proceed to using Nvidia H100 and A100 on the UNIGE Yggdrasil cluster
targeting possibly Gaia Data Release 4 and surely Data Release 5. Once the correctness of algorithms
when using various accelerators (embedded and discrete GPUs) and backends (OpenCL, SPIR-V) is
confirmed, the code will be deployed to the Rhea platform (or other AERO alternative testbeds if
Rhea is not available).

Additionally, UNIGE aspires to deploy the code on the GPU-accelerated MPP database developed by
SED (Section 2.3) via embedding VariFramework in the DB using TornadoVM embedded in PL/Java.

For the evaluation, UNIGE has several period-search and astro-dedicated algorithms implemented in
Java to be executed on CPUs. These algorithms will serve as the baseline for both accuracy and
performance for the GPU implementations based on TornadoVM:

➢ UNIGE will assess the algorithms’ performance both in isolated unit and integration tests
deployed at scale running on millions of astro-sources/time-series. As explained before, tests
and production runs will be conducted initially on an x86-based cluster containing GPUs; tests
on the Rhea platform will be performed at a later stage.

➢ As the algorithms will be refactored to be rebased with Float numerical precision in order to
achieve greater speedup, UNIGE will evaluate their scientific and mathematical soundness.

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 13

The primary KPI of this pilot will be the achieved speedup in the execution of Period Search when
taking advantage of GPU acceleration leveraging TornadoVM compared to utilizing a single node with
8 CPU cores through embarrassingly parallel CPU computation. A speedup greater than 15x will be
considered a success. Such speedup will enable the processing of more, and significantly longer,
time-series (G-band) than in the latest Gaia Data Release within the same processing window.

A secondary KPI, strongly related to the previous one, is whether the speedup can be achieved with
GPU-based processing while preserving the level of numerical accuracy achieved when processing is
performed on CPUs.

Finally, another measure of success will be successfully enabling Period Search on spectral time-
series which require 60x more data, as well as on Radial Velocity and astrometric (positional) time-
series. Such a success will enable new scientific products to be published in subsequent Gaia public
Data Releases. In total, around 500TB+ data might be processed using components based on the
AERO stack multiple times during the cyclic operations.

 HPC/Cloud Database Acceleration for Scientific Computing (SED)

2.3.1 Pilot Description

SED is the provider of a petabyte-scale MPP database based on PostgreSQL for the Gaia Variability
studies of UNIGE. Our MPP database is based on TBase2, a fork of Postgres-XL by the Chinese
company Tencent3 with improved stability and scalability. While Tencent kept the BSD license, both
the source code and license have diverged significantly from the original open-source driven non-
MPP PostgreSQL. The idea behind this pilot is two-fold:

➢ To preserve and expand the European-based know-how and open-source ecosystem of MPP
databases, in particular for scientific data-intensive applications. This will be achieved through
turning the stand-alone TBase fork into a dynamically loadable extension of the original
PostgreSQL. We will refer to this new extension as PG-XZ.

➢ To exploit the accelerators’ capabilities in the open source parallel and distributed PostgreSQL
leveraging the AERO stack for:

o User Defined Functions using GPU acceleration
o DB planner/executor using GPU acceleration.

2.3.2 Architecture

Currently, SED drives the development and usage of the TBase/Postgres-XL based on the Gaia
Variability use case to operate petabyte-scale for time-series in the scientific context. The
enhancement of the DB will pertain to enabling GPU query-processing using Level Zero and
embedding GPU functionality for time-series analysis using TornadoVM with embedded Java as User
Defined Functions in the DB, based on PL/Java - an embedded Java engine within the DB to allow
User Defined Functions (UDFs) to be executed close to the DB core.

2 https://github.com/Tencent/TBase
3 https://www.tencent.com/

https://github.com/Tencent/TBase
https://www.tencent.com/

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 14

Figure 3 depicts two levels of the envisioned GPU acceleration: created by users via User Defined
Functions (UDFs) in DB-embedded Java (PL/Java) and the planner and executor automatically
converting SQL queries to GPU-executed distributed plans (marked in blue in Figure 3).

Figure 3 Two levels of GPU-enhanced MPP Postgres cluster: SQL planner and executor and GPU-enabled

User Defined Functions in PL/Java+TornadoVM

2.3.3 Software Components

The main software components of interest to this pilot are the following:

➢ Linux (Alma Linux 9)
➢ TBase/Postgres-XL software stack: Around 1.3M Lines of Code, out of which ~5% is estimated

to be affected if pushed to the PG extension. SED will assess in parallel the possibility of
converting TBase to extension. This will allow for much wider adoption, as extensions are de-
facto standards to enable new features in Postgres and would avoid stalling development as
merging MPP code with vanilla PG has been proven time consuming. This would also enable
new PG features for free, if not related to MPP functionality, i.e., sort speedups, new index
types, new client functionality, vertical scalability improvements, new open platforms
(including RISC-V) etc.

➢ Postgres extensions, including at least:
o q3c4 for spherical queries.
o Apache Data Sketches5 for sketches/aggregations.

➢ PL/Java for TornadoVM of UNIGE to deploy specific algorithms to DB as Java UDFs.

4 https://github.com/segasai/q3c
5 https://datasketches.apache.org/

https://github.com/segasai/q3c
https://datasketches.apache.org/

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 15

➢ VariFramework components/ESA Gaia software stack to embed in the DB.

2.3.4 AERO Integration Components

The following main integration components have been identified:

➢ TornadoVM will enable GPU access using PL/Java extension at the application level (time-
series algorithm embedded in the DB).

➢ The Intel oneAPI Level Zero API will be used for the development of planner/executor.
➢ The Intel oneAPI Level Zero API will be the main API to integrate the DB engine with GPUs.

SED plans to port the PG-Strom Postgres extension (currently CUDA-based only) to the Level
Zero API and integrate it into the parallel database.

2.3.5 Deployment Strategy, Evaluation & KPIs

As the primary goal of this pilot is the integration of its software stack with TornadoVM, it will follow
a deployment strategy like the one presented in Section 2.2.5 (UNIGE pilot). More specifically, the
deployment will be performed initially on an x86-based cluster using GPUs (a cluster comprising
AMD EPYC CPUs and Nvidia A100 GPUs is expected to be available by M12 of the project), before
moving to the Rhea platform or other AERO alternative testbeds.

Both SED and UNIGE work in the greater frame of the Gaia mission operations that define their main
activities. Taking these into account, in the context of AERO there are two main activities:

1. Cyclic operations for Gaia Data Release 4, starting in September 2023 (M9 of the project) and
finishing in early 2025. The target is to achieve GPU functionality at least via PL/Java and
TornadoVM to enable GPU-accelerated functions directly in the DB (VariPeriod search,
unsupervised classification).

2. Cyclic operations for Gaia Data Release 5, starting in late 2025, i.e., at the last stages of the
AERO project. The target is to achieve GPU integration of the DB engine, with PG-Strom
ported to the Level Zero API, enabling SQL plans to be executed on GPU.

For the evaluation of the first phase, existing crucial functions deployed in DB will be ported to
TornadoVM based on embedded PL/Java. This is expected to lead to a considerable speedup for
several operational activities, such as timeseries-reconstruction and deployment for ad-hoc period-
search algorithms to enable quick experimentation also with hybrid supervised/unsupervised
classification within the DB.

The second phase, which includes the extension of the DB engine in order to enable the DB planner
and executor to leverage the GPU, will be evaluated based on the achieved speedup. Specifically, a
certain number of analytical queries used by scientists in the Gaia results validation are expected to
be executed considerably faster.

In general, the main KPIs are the accuracy, stability and performance of the same queries run on the
current and the enhanced DB. Similar to standard OLAP/OLTP DB benchmarks, performance metrics
will be obtained on specific hardware using specific real-life datasets coming from the Gaia mission.
The expected performance gains for some of the queries are in the range of 2-20x while no
performance degradation is expected for those that cannot profit from the acceleration.

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 16

3 Summary

This deliverable has presented the AERO pilots, how they are expected to be integrated with the
AERO software stack and deployed on the AERO testbeds. Further, it has defined their evaluation
strategy together with specific KPIs. The following table summarizes the key takeaways for the three
AERO pilots.

Pilot
partner KTM UNIGE SED

Pilot Automotive Digital
Twin

High-Performance
Algorithms for Space
Exploration

HPC/Cloud Database Acceleration
for Scientific Computing

Brief
Description

Vehicle Information
Service

Processing and analytics of
astronomical time-series data

MPP relational databases using
hardware accelerators (GPUs)

Software
Components

Docker, NodeJS,
TypeScript,
MongoDB, Apache
Kafka, Zookeeper

VariFramework stack

TBase/Postgres-XL software
stack, PL/Java, VariFramework
components, ESA Gaia software
stack

AERO
Integration
Components

Docker, Apache Kafka TornadoVM TornadoVM, Intel oneAPI Level
Zero API

Deployment
Strategy

Docker containers.
Initial testing on
Microsoft Azure ARM
instances until Rhea
platform becomes
available.

Initial deployment on dedicated cluster with x86 CPUs, Intel
embedded GPUs and Nvidia H100 and A100 GPUs. Once
integration with TornadoVM is completed, deployment on Rhea or
other AERO testbeds will be attempted.

Evaluation

Employment of a
system integration
testing methodology.
Behavior of
application will be
assessed whether it is
similar on x86 and
ARM cores.

Compare the accuracy and
performance of the Java
algorithms that run currently
on CPU against the GPU-
accelerated implementations
that will be developed in
AERO via TornadoVM.

Split in two phases: 1) Successful
porting of DB functions in
TornadoVM, and 2) successful
extension of the DB engine using
the Level Zero API.

KPI(s)

100% pass-rate
across all test suites
on the Rhea platform.
Satisfy current SLAs
on Rhea similar to x86
platforms. Monitored
metrics: Transactions
per second, mean
time between failures,
latency, etc.

Performance: >=15x
performance speedup with
GPU-accelerated code.

Achieving speedup with
GPU-based processing while
preserving the level of
numerical accuracy achieved
with CPU-based processing.

Successfully enabling
spectral time-series, Radial
Velocity and astrometric
(positional) time-series.

Performance: >=2x performance
speedup leveraging GPU
acceleration.

Achieve similar accuracy when
queries are run on the current and
the enhanced DB.

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 17

Appendix I: UNIGE IVP dependency list

As a reference to the size of the dependency list of Gaia Integrated Variability Pipeline (IVP), we
include a list of packages as of Q2 2023. The total size of dependencies is around 330MB. The
successful pilot execution entails testing a large portion of functionality included in the modules listed
below. The modules starting with Vari*, SVD*, AGIS*, Gaia* are Gaia DPAC modules. The rest are off
the shelf, open-source components.

Component Size Component Size
activemq-broker-5.16.4.jar 1.6M activemq-client-5.16.4.jar 1.8M
activemq-jms-pool-5.16.4.jar 256K activemq-openwire-legacy-

5.16.4.jar
1.1M

activemq-pool-5.16.4.jar 128K activemq-spring-5.16.4.jar 584K
AGISDm-17.1.0.jar 672K AGISLab-17.1.0.jar 6.3M
AGISTools-17.1.0.jar 960K all-1.1.2.pom 32K
ant-1.9.6.jar 2.6M ant-launcher-1.9.6.jar 128K
antlr-2.7.7.jar 856K antlr-runtime-3.5.2.jar 584K
apiguardian-api-1.1.2.jar 32K arpack_combined_all-0.1.jar 7.1M
arpack_combined_all-0.1-javadoc.jar 7.1M aspectjweaver-1.9.7.jar 2.8M
assertj-core-3.22.0.jar 6.2M bounce-0.18.jar 624K
byte-buddy-1.12.9.jar 4.5M byte-buddy-agent-1.11.13.jar 664K
camel-activemq-3.16.0.jar 288K camel-api-3.16.0.jar 928K
camel-base-3.16.0.jar 584K camel-base-engine-3.16.0.jar 904K
camel-bean-3.16.0.jar 568K camel-bean-starter-3.16.0.jar 128K
camel-browse-3.16.0.jar 128K camel-browse-starter-3.16.0.jar 96K
camel-cloud-3.16.0.jar 384K camel-cluster-3.16.0.jar 160K
camel-controlbus-3.16.0.jar 160K camel-controlbus-starter-

3.16.0.jar
96K

camel-core-3.16.0.jar 32K camel-core-engine-3.16.0.jar 480K
camel-core-languages-3.16.0.jar 616K camel-core-model-3.16.0.jar 1.5M
camel-core-processor-3.16.0.jar 872K camel-core-reifier-3.16.0.jar 672K
camel-core-starter-3.16.0.jar 288K camel-core-xml-3.16.0.jar 416K
camel-dataformat-3.16.0.jar 128K camel-dataformat-starter-

3.16.0.jar
96K

camel-dataset-3.16.0.jar 256K camel-dataset-starter-3.16.0.jar 128K
camel-direct-3.16.0.jar 160K camel-direct-starter-3.16.0.jar 96K
camel-directvm-3.16.0.jar 192K camel-directvm-starter-

3.16.0.jar
96K

camel-dsl-support-3.16.0.jar 96K camel-file-3.16.0.jar 632K
camel-file-starter-3.16.0.jar 128K camel-health-3.16.0.jar 192K
camel-jms-3.16.0.jar 664K camel-jmx-3.16.0.jar 320K
camel-language-3.16.0.jar 160K camel-language-starter-

3.16.0.jar
96K

camel-log-3.16.0.jar 192K camel-log-starter-3.16.0.jar 96K
camel-main-3.16.0.jar 656K camel-management-3.16.0.jar 680K
camel-management-api-3.16.0.jar 544K camel-metrics-3.16.0.jar 288K

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 18

camel-mock-3.16.0.jar 448K camel-mock-starter-3.16.0.jar 96K
camel-ref-3.16.0.jar 128K camel-ref-starter-3.16.0.jar 96K
camel-rest-3.16.0.jar 320K camel-rest-starter-3.16.0.jar 128K
camel-saga-3.16.0.jar 128K camel-saga-starter-3.16.0.jar 96K
camel-scheduler-3.16.0.jar 160K camel-scheduler-starter-

3.16.0.jar
96K

camel-seda-3.16.0.jar 256K camel-seda-starter-3.16.0.jar 96K
camel-spring-3.16.0.jar 416K camel-spring-boot-3.16.0.jar 568K
camel-spring-boot-starter-3.16.0.jar 32K camel-spring-main-3.16.0.jar 128K
camel-spring-xml-3.16.0.jar 680K camel-stub-3.16.0.jar 128K
camel-stub-starter-3.16.0.jar 96K camel-support-3.16.0.jar 1.2M
camel-test-3.16.0.jar 224K camel-test-junit5-3.16.0.jar 288K
camel-test-spring-3.16.0.jar 256K camel-test-spring-junit5-

3.16.0.jar
288K

camel-timer-3.16.0.jar 160K camel-timer-starter-3.16.0.jar 96K
camel-tooling-model-3.16.0.jar 224K camel-util-3.16.0.jar 600K
camel-util-json-3.16.0.jar 192K camel-validator-3.16.0.jar 160K
camel-validator-starter-3.16.0.jar 96K camel-vm-3.16.0.jar 128K
camel-vm-starter-3.16.0.jar 96K camel-xml-io-util-3.16.0.jar 128K
camel-xml-jaxb-3.16.0.jar 160K camel-xml-jaxb-dsl-3.16.0.jar 96K
camel-xml-jaxp-3.16.0.jar 512K camel-xml-jaxp-starter-

3.16.0.jar
96K

camel-xpath-3.16.0.jar 224K camel-xpath-starter-3.16.0.jar 96K
camel-xslt-3.16.0.jar 288K camel-xslt-starter-3.16.0.jar 96K
checker-qual-3.31.0.jar 640K classmate-1.5.1.jar 320K
cloning-1.9.12.jar 160K common-3.6.jar 448K
commons-beanutils-1.9.3.jar 664K commons-codec-1.11.jar 744K
commons-collections-3.2.1.jar 984K commons-collections4-4.4.jar 1.2M
commons-compress-1.19.jar 1.0M commons-configuration-1.7.jar 760K
commons-dbcp-1.4.jar 576K commons-digester-1.8.1.jar 560K
commons-io-2.6.jar 632K commons-lang-2.6.jar 696K
commons-lang3-3.12.0.jar 992K commons-logging-1.2.jar 288K
commons-math3-3.6.1.jar 2.9M commons-pool-1.6.jar 480K
commons-pool2-2.11.1.jar 560K commons-rng-client-api-1.3.jar 96K
commons-rng-core-1.3.jar 384K commons-rng-sampling-1.3.jar 416K
commons-rng-simple-1.3.jar 224K converter-gson-2.4.0.jar 32K
core-1.1.2.jar 584K disruptor-3.4.2.jar 384K
dozer-5.4.0.jar 664K duke-1.2.jar 688K
ejb-api-3.0-alpha-1.jar 224K ejml-all-0.34.jar 32K
ejml-cdense-0.34.jar 352K ejml-core-0.34.jar 584K
ejml-ddense-0.34.jar 736K ejml-dsparse-0.34.jar 288K
ejml-fdense-0.34.jar 728K ejml-simple-0.34.jar 584K
ejml-zdense-0.34.jar 352K error_prone_annotations-

2.11.0.jar
96K

failureaccess-1.0.1.jar 32K flanagan-1.0.jar 1.6M
fluent-hc-4.5.9.jar 160K freehep-io-2.0.5.jar 320K
fst-2.57.jar 808K GaiaMdbDm-20.0.18.jar 8.6M

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 19

GaiaParameters-21.1.0.jar 1.2M GaiaTools-20.6.1.jar 4.3M
GaiaToolsDm-21.3.0.jar 1.1M geojson-jackson-1.5.1.jar 128K
geronimo-j2ee-management_1.1_spec-
1.0.1.jar

128K geronimo-jms_1.1_spec-
1.1.1.jar

160K

geronimo-jms_2.0_spec-1.0-alpha-2.jar 224K geronimo-jta_1.1_spec-1.1.1.jar 96K
groovy-4.0.5.jar 8.6M groovy-jsr223-4.0.5.jar 128K
gson-2.9.0.jar 664K guava-31.1-jre.jar 3.7M
h2o-algos-3.30.0.1.jar 1.7M h2o-automl-3.30.0.1.pom 32K
h2o-bindings-3.30.0.1.pom 32K h2o-core-3.30.0.1.jar 5.2M
h2o-ext-mojo-pipeline-3.30.0.1.pom 32K h2o-genmodel-3.30.0.1.jar 736K
h2o-genmodel-ext-xgboost-3.30.0.1.jar 128K h2o-jaas-pam-3.30.0.1.jar 32K
h2o-logger-3.30.0.1.jar 32K h2o-tree-api-0.3.15.jar 32K
h2o-webserver-iface-3.30.0.1.jar 64K hamcrest-2.2.jar 544K
hamcrest-all-1.3.jar 720K hamcrest-core-1.3.jar 224K
hamcrest-library-1.3.jar 256K hawtbuf-1.11.jar 256K
hibernate-commons-annotations-
5.1.2.Final.jar

352K hibernate-core-5.6.8.Final.jar 8.7M

HikariCP-4.0.3.jar 576K htmIndex-3.0.2.jar 728K
httpclient-4.5.9.jar 1.2M httpclient-cache-4.5.9.jar 584K
httpcore-4.4.11.jar 736K httpmime-4.5.9.jar 224K
interval-tree-1.0.0.jar 128K istack-commons-runtime-

4.0.0.jar
160K

itext-2.0.1.jar 2.2M j2objc-annotations-1.3.jar 96K
j3d-core-1.3.1.jar 3.2M j3d-core-utils-1.3.1.jar 1.8M
jackson-annotations-2.15.2.jar 352K jackson-core-2.15.2.jar 960K
jackson-databind-2.15.2.jar 2.0M jakarta.activation-2.0.0.jar 288K
jakarta.annotation-api-1.3.5.jar 160K jakarta.persistence-api-2.2.3.jar 584K
jakarta.transaction-api-1.3.3.jar 96K jakarta.xml.bind-api-3.0.0.jar 544K
jama-1.0.3.jar 192K jandex-2.4.2.Final.jar 648K
java-cup-11b-2015.03.26.jar 416K java-cup-11b-runtime-

2015.03.26.jar
128K

javaparser-1.0.11.jar 704K javassist-3.25.0-GA.jar 1.2M
javax.activation-1.2.0.jar 352K javax.activation-api-1.2.0.jar 256K
javax.annotation-api-1.3.2.jar 160K javax.persistence-2.1.0.jar 576K
javax.servlet-api-4.0.1.jar 416K jaxb2-basics-1.11.1.jar 560K
jaxb2-basics-ant-1.11.1.jar 32K jaxb2-basics-runtime-1.11.1.jar 584K
jaxb2-basics-tools-1.11.1.jar 560K jaxb2-default-value-1.1.jar 64K
jaxb2-value-constructor-3.0.jar 32K jaxb-api-2.1.9.jar 448K
jaxb-api-2.3.1.jar 544K jaxb-core-2.3.0.1.jar 672K
jaxb-core-3.0.0.jar 560K jaxb-impl-2.4.0-

b180830.0438.jar
1.5M

jaxb-runtime-3.0.0.jar 1.3M jaxen-1.0-FCS.jar 608K
jaxrpc-api-1.1.jar 160K jboss-serialization-4.2.2.GA.jar 544K
jcl-over-slf4j-1.7.7.jar 128K jcommon-1.0.23latex.jar 736K
jdom-1.0.jar 568K jfreechart-1.0.10.jar 1.7M
jfreechart-1.5.0.jar 1.9M jfreechartbinding-0.0.6.jar 544K
jhealpix-3.2.0.jar 968K JLargeArrays-1.5.jar 648K

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 20

jmathtex-0.7pre.jar 648K jmh-core-1.21.jar 920K
jmotif-0.97.jar 736K jmotif-isax-0.97.jar 584K
jmx_prometheus_javaagent-0.17.0.jar 944K jna-4.0.0.jar 1.3M
jniloader-1.1.jar 96K joda-time-2.9.9.jar 1.1M
jolokia-jvm-agent-1.6.2.jar 872K jopt-simple-4.6.jar 288K
jsap-2.1.jar 320K jsr305-3.0.2.jar 128K
JTransforms-3.1.jar 1.6M junit-4.13.2.jar 792K
junit-addons-1.4.jar 256K junit-jupiter-api-5.8.2.jar 608K
junit-jupiter-engine-5.8.2.jar 648K junit-jupiter-params-5.8.2.jar 984K
junit-platform-commons-1.8.2.jar 448K junit-platform-engine-1.8.2.jar 600K
krasa-jaxb-tools-1.4.jar 128K kryo-5.1.1.jar 768K
libpam4j-1.8.jar 128K listenablefuture-9999.0-empty-

to-avoid-conflict-with-guava.jar
32K

log4j2-logstash-layout-1.0.5.jar 480K log4j-api-2.17.2.jar 712K
log4j-core-2.17.2.jar 2.2M log4j-jul-2.17.2.jar 160K
log4j-slf4j-impl-2.17.2.jar 128K lombok-1.18.24.jar 2.4M
lz4-1.3.0.jar 648K lz4-java-1.4.0.jar 784K
management-api-1.1-rev-1.jar 160K metrics-core-4.2.7.jar 544K
metrics-jmx-4.2.7.jar 128K metrics-json-4.2.7.jar 128K
minlog-1.3.1.jar 32K mockito-core-3.12.4.jar 1.1M
mojo2-runtime-api-0.13.7.jar 256K mtj-1.0.4.jar 680K
mvel2-2.4.12.Final.jar 1.2M native_ref-java-1.1.jar 256K
native_system-java-1.1.jar 256K net-ivoa-fits-0.1.jar 600K
netlib-java-1.1.jar 416K netlib-native_ref-linux-armhf-

1.1.jar
1.6M

netlib-native_ref-linux-armhf-1.1-natives.jar 1.6M netlib-native_ref-linux-i686-
1.1.jar

1.9M

netlib-native_ref-linux-i686-1.1-natives.jar 1.9M netlib-native_ref-linux-x86_64-
1.1.jar

2.1M

netlib-native_ref-linux-x86_64-1.1-natives.jar 2.1M netlib-native_ref-osx-x86_64-
1.1.jar

2.2M

netlib-native_ref-osx-x86_64-1.1-natives.jar 2.2M netlib-native_ref-win-i686-
1.1.jar

2.2M

netlib-native_ref-win-i686-1.1-natives.jar 2.2M netlib-native_ref-win-x86_64-
1.1.jar

3.0M

netlib-native_ref-win-x86_64-1.1-natives.jar 3.0M netlib-native_system-linux-
armhf-1.1.jar

720K

netlib-native_system-linux-armhf-1.1-
natives.jar

720K netlib-native_system-linux-
i686-1.1.jar

848K

netlib-native_system-linux-i686-1.1-
natives.jar

848K netlib-native_system-linux-
x86_64-1.1.jar

864K

netlib-native_system-linux-x86_64-1.1-
natives.jar

864K netlib-native_system-osx-
x86_64-1.1.jar

960K

netlib-native_system-osx-x86_64-1.1-
natives.jar

960K netlib-native_system-win-i686-
1.1.jar

968K

netlib-native_system-win-i686-1.1-natives.jar 968K netlib-native_system-win-
x86_64-1.1.jar

1.1M

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 21

netlib-native_system-win-x86_64-1.1-
natives.jar

1.1M numericalmethods-1.0.jar 656K

objenesis-3.2.jar 256K ognl-2.6.9.jar 584K
okhttp-3.10.0.jar 824K okio-1.14.0.jar 384K
opencsv-2.3.jar 128K openjpa-all-3.2.2-CU7.jar 7.7M
opentest4j-1.2.0.jar 32K operator-22.1.3.jar 648K
org.apache.bval.bundle-1.1.2.jar 904K postgresql-42.6.0.jar 1.5M
preferences-3.6.jar 480K reflectasm-1.11.9.jar 320K
retrofit-2.4.0.jar 416K rxjava-1.2.0.jar 1.5M
saxpath-1.0-FCS.jar 128K simple-5.1.6.jar 664K
slf4j-api-1.7.36.jar 224K snakeyaml-1.30.jar 744K
SOS_AGN-SB-22.1.0-r763042M-
20230322163342.jar

640K SOS_BlackHoles-SB-22.1.0-
r766975M-
20230608151118.jar

512K

SOS_CepheidAndRRLyrae-SB-22.1.0-
r767271-20230608152241.jar

1.1M SOS_EclipsingBinaries-SB-
22.1.0-r768413M-
20230608153341.jar

1.7M

SOS_FlaringAndRotationalModulation-SB-
22.1.0-r769585M-20230608164703.jar

872K SOS_LPV-SB-22.1.0-
r769578M-
20230608160620.jar

680K

SOS_Microlensing-SB-GJ_22.1.0-r752441M-
20220922134308.jar

784K SOS_PlanetaryTransits-
22.1.0.jar

592K

spring-aop-5.3.19.jar 792K spring-aspects-5.3.19.jar 224K
spring-beans-5.3.19.jar 1.1M spring-boot-2.6.7.jar 1.8M
spring-boot-autoconfigure-2.6.7.jar 2.0M spring-boot-starter-2.6.7.jar 32K
spring-boot-starter-aop-2.6.7.jar 32K spring-boot-starter-data-jpa-

2.6.7.jar
32K

spring-boot-starter-jdbc-2.6.7.jar 32K spring-boot-test-2.6.7.jar 640K
spring-context-5.3.19.jar 1.7M spring-core-5.3.19.jar 1.9M
spring-data-commons-2.6.4.jar 1.7M spring-data-jpa-2.6.4.jar 784K
spring-expression-5.3.19.jar 704K spring-jcl-5.3.19.jar 128K
spring-jdbc-5.3.19.jar 840K spring-jms-5.3.16.jar 680K
spring-messaging-5.3.16.jar 976K spring-orm-5.3.19.jar 616K
spring-test-5.3.19.jar 1.2M spring-tx-5.3.19.jar 744K
stringtemplate-3.2.1.jar 568K super-csv-2.3.1.jar 416K
super-csv-dozer-2.3.1.jar 96K SVD_CombineDetection-SB-

22.1.0-r752443-
20230608132815.jar

288K

SVD_PlanetaryTransits-SB-22.1.0-
r769183M-20230608133535.jar

848K SVD_ShortTimeScale-SB-
22.1.0-r769233M-
20230608133947.jar

704K

SVD_SolarLike-SB-22.1.0-r752446M-
20230503175741.jar

992K Taglets-1.0.jar 160K

text-3.5.jar 664K tornado-api-0.15.1-dev-dev.jar 664K
tornado-api-0.15.1-dev.jar 664K tornado-matrices-0.15.1-dev-

dev.jar
96K

tornado-matrices-0.15.1-dev.jar 96K transaction-api-1.1.jar 96K
txw2-3.0.0.jar 320K unitils-core-3.4.6.jar 608K

AERO D2.1 – PILOT REQUIREMENTS & DEFINITIONS 22

validation-api-1.1.0.Final.jar 288K VariCharacterisation-SB-22.2.0-
r766896M-
20230608132529.jar

1008K

VariClassification-SB-22.1.0-r765167M-
20230418135919.jar

1.6M VariConfiguration-SB-22.3.0-
r768498-20230526083739.jar

3.4M

VariFramework-SB-22.3.0-r769095M-
20230608093113.jar

1.1M VariGeneralDetection-SB-
22.1.0-r766967M-
20230530222247.jar

968K

VariLcModels-13.0.0.jar 824K VariModelling-SB-22.2.0-
r766899M-
20230608105318.jar

1.2M

VariObjectModelInterface-22.1.2.jar 160K VariObjectModel-SB-22.3.0-
r769141M-
20230608114920.jar

6.9M

VariPeriodSearch-SB-22.2.0-r769520M-
20230608114654.jar

2.7M VariPostTakerValidation-SB-
21.3.0-r760698-
20230127132659.jar

448K

VariStatistics-SB-22.2.0-r769391M-
20230608095826.jar

1.2M vecmath-1.3.1.jar 704K

weka-stable-3.8.1.jar 11M xbean-spring-4.17.jar 552K
xgboost-predictor-0.3.15.jar 192K xmlpull-1.1.3.1.jar 32K
xmlunit-1.4.jar 448K xpp3_min-1.1.4c.jar 160K
xstream-1.4.11.1.jar 1.0M xz-1.6.jar 448K
zstd-jni-1.5.2-3.jar 6.4M

